Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

Overview



HAWQ: Hessian AWare Quantization

HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform quantization, with direct hardware implementation through TVM.

For more details please see:

Installation

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • For training new models, you'll also need NVIDIA GPUs and NCCL
  • To install HAWQ and develop locally:
git clone https://github.com/Zhen-Dong/HAWQ.git
cd HAWQ
pip install -r requirements.txt

Getting Started

Quantization-Aware Training

An example to run uniform 8-bit quantization for resnet50 on ImageNet.

export CUDA_VISIBLE_DEVICES=0
python quant_train.py -a resnet50 --epochs 1 --lr 0.0001 --batch-size 128 --data /path/to/imagenet/ --pretrained --save-path /path/to/checkpoints/ --act-range-momentum=0.99 --wd 1e-4 --data-percentage 0.0001 --fix-BN --checkpoint-iter -1 --quant-scheme uniform8

The commands for other quantization schemes and for other networks are shown in the model zoo.

Inference Acceleration

Experimental Results

Table I and Table II in HAWQ-V3: Dyadic Neural Network Quantization

ResNet18 on ImageNet

Model Quantization Model Size(MB) BOPS(G) Accuracy(%) Inference Speed (batch=8, ms) Download
ResNet18 Floating Points 44.6 1858 71.47 9.7 (1.0x) resnet18_baseline
ResNet18 W8A8 11.1 116 71.56 3.3 (3.0x) resnet18_uniform8
ResNet18 Mixed Precision 6.7 72 70.22 2.7 (3.6x) resnet18_bops0.5
ResNet18 W4A4 5.8 34 68.45 2.2 (4.4x) resnet18_uniform4

ResNet50 on ImageNet

Model Quantization Model Size(MB) BOPS(G) Accuracy(%) Inference Speed (batch=8, ms) Download
ResNet50 Floating Points 97.8 3951 77.72 26.2 (1.0x) resnet50_baseline
ResNet50 W8A8 24.5 247 77.58 8.5 (3.1x) resnet50_uniform8
ResNet50 Mixed Precision 18.7 154 75.39 6.9 (3.8x) resnet50_bops0.5
ResNet50 W4A4 13.1 67 74.24 5.8 (4.5x) resnet50_uniform4

More results for different quantization schemes and different models (also the corresponding commands and important notes) are available in the model zoo.
To download the quantized models through wget, please refer to a simple command in model zoo.
Checkpoints in model zoo are saved in floating point precision. To shrink the memory size, BitPack can be applied on weight_integer tensors, or directly on quantized_checkpoint.pth.tar file.

Related Works

License

HAWQ is released under the MIT license.

Owner
Zhen Dong
PhD student at BAIR; B.S. at PKU EECS.
Zhen Dong
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022