The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Overview

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds

image In this project, we aimed to develop a deep learning (DL) method to automatically detect impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical four-chamber (A4C) ultrasound cineloops. Two R(2+1)D convolutional neural networks (CNNs) were trained to detect the respective diseases. Subsequently, tSNE was used to visualize the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image features associated with the diagnostic tasks.

The why

  • An automated echocardiography interpretation method requiring only limited views as input, say A4C, could make cardiovascular disease diagnosis more accessible.

    • Such system could become beneficial in geographic regions with limited access to expert cardiologists and sonographers.
    • It could also support general practitioners in the management of patients with suspected CVD, facilitating timely diagnosis and treatment of patients.
  • If the trained CNN can detect the diseases based on limited information, how?

    • Especially, AV regurgitation is typically diagnosed based on color Doppler images using one or more viewpoints. When given only the A4C view, would the model be able to detect regurgitation? If so, what image features does the model use to make the distinction? Since it’s on the A4C view, would the model identify some anatomical structure or movement associated with regurgitation, which are typically not being considered in conventional image interpretation? This is what we try to find out in the study.

Image features associated with the diagnostic tasks

DeepLIFT attributes a model’s classification output to certain input features (pixels), which allows us to understand which region or frame in an ultrasound is the key that makes the model classify it as a certain diagnosis. Below are some example analyses.

Representative normal cases

Case Averaged logit Input clip / Impaired LV function model's focus / AV regurgitation model's focus
Normal1 0.9999 image
Normal2 0.9999 image
Normal3 0.9999 image
Normal4 0.9999 image
Normal5 0.9999 image
Normal6 0.9999 image
Normal7 0.9998 image
Normal8 0.9998 image
Normal9 0.9998 image
Normal10 0.9997 image

DeepLIFT analyses reveal that the LV myocardium and mitral valve were important for detecting impaired LV function, while the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Apart from the above examples, all confident cases are provided, which the predicted probability of being the normal class by the two models are both higher than 0.98. See the full list here.

Representative disease cases

  • Mildly impaired LV
Case Logit Input clip / Impaired LV function model's focus
MildILV1 0.9989 image
MildILV2 0.9988 image
  • Severely impaired LV
Case Logit Input clip / Impaired LV function model's focus
SevereILV1 1.0000 image
SevereILV2 1.0000 image
  • Mild AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
MildAVR1 0.7240 image
MildAVR2 0.6893 image
  • Substantial AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
SubstantialAVR1 0.9919 image
SubstantialAVR2 0.9645 image

When analyzing disease cases, the highlighted regions in different queries are quite different. We speculate that this might be due to a higher heterogeneity in the appearance of the disease cases. Apart from the above examples, more confident disease cases are provided. See the full list here.

Run the code on your own dataset

The dataloader in util can be modified to fit your own dataset. To run the full workflow, namely training, validation, testing, and the subsequent analyses, simply run the following commands:

git clone https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature.git
cd Disease-Detection-and-Diagnostic-Image-Feature/util
pip install -e .
cd ../projectDDDIF
python main.py

Loading the trained model weights

The model weights are made available for external validation, or as pretraining for other echocardiography-related tasks. To load the weights, navigate to the projectDDDIF folder, and run the following python code:

import torch
import torch.nn as nn
import torchvision

#Load impaired LV model
model_path = 'model/impairedLV/train/model_val_min.pth'
# #Load AV regurgitation model
# model_path = 'model/regurg/train/model_val_min.pth'

model = torchvision.models.video.__dict__["r2plus1d_18"](pretrained=False)
model.stem[0] = nn.Conv3d(1, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load(model_path))

Questions and feedback

For techinical problems or comments about the project, feel free to contact [email protected].

Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022