COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

Related tags

Deep Learningcopa-sse
Overview

COPA-SSE

Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning.

Crowdsourcing protocol

COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset, a variant of the Choice of Plausible Alternatives (COPA) benchmark. The explanations are formatted as a set of triple-like common sense statements with ConceptNet relations but freely written concepts.

Data format

dev-explained.jsonl and test-explained.jsonl each contain Balanced COPA samples with added explanations in .jsonl format. The question ids match the original questions of the development and test set, respectively.

Each entry contains:

  • the original question (matching format and ids)
  • human-explanations: a list of explanations each containing:
    • expl-id: the explanation id
    • text: the explanation in plain text (full sentences)
    • worker-id: anonymized worker id (the author of the explanation)
    • worker-avg: the average score the author got for their explanations
    • all-ratings: all collected ratings for the explanation
    • filtered-ratings: ratings excluding those that failed the control
    • triples: the triple-form explanation (a list of ConceptNet-like triples)

Example entry:

id: 1, 
asks-for: cause, 
most-plausible-alternative: 1,
p: "My body cast a shadow over the grass.", 
a1: "The sun was rising.", 
a2: "The grass was cut.", 
human-explanations: [
    {expl-id: f4d9b407-681b-4340-9be1-ac044f1c2230, 
     text: "Sunrise causes casted shadows.", 
     worker-id: 3a71407b-9431-49f9-b3ca-1641f7c05f3b, 
     worker-avg: 3.5832864694635025, 
     all-ratings: [1, 3, 3, 4, 3], 
     filtered-ratings: [3, 3, 4, 3], 
     filtered-avg-rating: 3.25, 
     triples: [["sunrise", "Causes", "casted shadows"]]
     }, ...]

Aggregated versions

graphs.pkl contains aggregated versions of the triples for each question in a dictionary format with COPA question ids as the key.

Each entry contains a list of edges, each being a tuple of (u, v, {'rel': relation, 'weight': weight}). Similar nodes were connected or merged with relatedto, depending on the cosine similarity between their SentenceTransformer embeddings. The weight is the average score of the explanation the edge originated from (summed if multiple), or 1.0 if the edge was automatically generated.

  • Note: not all graphs are (weakly) connected.

Example entry:

1: [('sunrise', 'casted_shadows', {'rel': 'causes', 'weight': 3.25}),
  ('sunrise', 'sun', {'rel': 'relatedto', 'weight': 1.0}),
  ('casted_shadows', 'the_shadow', {'rel': 'relatedto', 'weight': 1.0}),
  ('sun_rising', 'bringing_light', {'rel': 'hasproperty', 'weight': 4.25}),
  ('sun_rising', 'a_sun_raising', {'rel': 'relatedto', 'weight': 1.0}),
 ...
]

Citation

Thank you for your interest in our dataset! If you use it in your research, please cite:

@misc{brassard2022copasse,
    title={COPA-SSE: Semi-structured Explanations for Commonsense Reasoning},
    author={Ana Brassard and Benjamin Heinzerling and Pride Kavumba and Kentaro Inui},
    year={2022},
    eprint={2201.06777},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Ana Brassard
Ana Brassard
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
LBK 35 Dec 26, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022