A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

Overview

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

This repository is the official implementation of A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery by Aatif Jiwani, Shubhrakanti Ganguly, Chao Ding, Nan Zhou, and David Chan.

model visualization

Requirements

  1. To install GDAL/georaster, please follow this doc for instructions.
  2. Install other dependencies from requirements.txt
pip install -r requirements.txt

Datasets

Downloading the Datasets

  1. To download the AICrowd dataset, please go here. You will have to either create an account or sign in to access the training and validation set. Please store the training/validation set inside <root>/AICrowd/<train | val> for ease of conversion.
  2. To download the Urban3D dataset, please run:
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/01-Provisional_Train/ <root>/Urban3D/train
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/02-Provisional_Test/ <root>/Urban3D/test
  1. To download the SpaceNet Vegas dataset, please run:
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/SN2_buildings_train_AOI_2_Vegas.tar.gz <root>/SpaceNet/Vegas/
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/AOI_2_Vegas_Test_public.tar.gz <root>/SpaceNet/Vegas/

tar xvf <root>/SpaceNet/Vegas/SN2_buildings_train_AOI_2_Vegas.tar.gz
tar xvf <root>/SpaceNet/Vegas/AOI_2_Vegas_Test_public.tar.gz

Converting the Datasets

Please use our provided dataset converters to process the datasets. For all converters, please look at the individual files for an example of how to use them.

  1. For AICrowd, use datasets/converters/cocoAnnotationToMask.py.
  2. For Urban3D, use datasets/converters/urban3dDataConverter.py.
  3. For SpaceNet, use datasets/converters/spaceNetDataConverter.py

Creating the Boundary Weight Maps

In order to train with the exponentially weighted boundary loss, you will need to create the weight maps as a pre-processing step. Please use datasets/converters/weighted_boundary_processor.py and follow the example usage. The inc parameter is specified for computational reasons. Please decrease this value if you notice very high memory usage.

Note: these maps are not required for evaluation / testing.

Training and Evaluation

To train / evaluate the DeepLabV3+ models described in the paper, please use train_deeplab.sh or test_deeplab.sh for your convenience. We employ the following primary command-line arguments:

Parameter Default Description (final argument)
--backbone resnet The DeeplabV3+ backbone (final method used drn_c42)
--out-stride 16 The backbone compression facter (8)
--dataset urban3d The dataset to train / evaluate on (other choices: spaceNet, crowdAI, combined)
--data-root /data/ Please replace this with the root folder of the dataset samples
--workers 2 Number of workers for dataset retrieval
--loss-type ce_dice Type of objective function. Use wce_dice for exponentially weighted boundary loss
--fbeta 1 The beta value to use with the F-Beta Measure (0.5)
--dropout 0.1 0.5 Dropout values to use in the DeepLabV3+ (0.3 0.5)
--epochs None Number of epochs to train (60 for train, 1 for test)
--batch-size None Batch size (3/4)
--test-batch-size None Testing Batch Size (1/4)
--lr 1e-4 Learning Rate (1e-3)
--weight-decay 5e-4 L2 Regularization Constant (1e-4)
--gpu-ids 0 GPU Ids (Use --no-cuda for only CPU)
--checkname None Experiment name
--use-wandb False Track experiment using WandB
--resume None Experiment name to load weights from (i.e. urban for weights/urban/checkpoint.pth.tar)
--evalulate False Enable this flag for testing
--best-miou False Enable this flag to get best results when testing
--incl-bounds False Enable this flag when training with wce_dice as a loss

To train with the cross-task training strategy, you need to:

  1. Train a model using --dataset=combined until the best loss has been achieved
  2. Train a model using --resume=<checkname> on one of the three primary datasets until the best mIoU is achieved

Pre-Trained Weights

We provide pre-trained model weights in the weights/ directory. Please use Git LFS to download these weights. These weights correspond to our best model on all three datasets.

Results

Our final model is a DeepLavV3+ module with a Dilated ResNet C42 backbone trained using the F-Beta Measure + Exponentially Weighted Cross Entropy Loss (Beta = 0.5). We employ the cross-task training strategy only for Urban3D and SpaceNet.

Our model achieves the following:

Dataset Avg. Precision Avg. Recall F1 Score mIoU
Urban3D 83.8% 82.2% 82.4% 83.3%
SpaceNet 91.4% 91.8% 91.6% 90.2%
AICrowd 96.2% 96.3% 96.3% 95.4%

Acknowledgements

We would like to thank jfzhang95 for his DeepLabV3+ model and training template. You can access this repository here

Owner
Aatif Jiwani
Hey! I am Aatif Jiwani, and I am currently a Machine Learning Engineer at C3.ai. Previously, I studied EECS at UC Berkeley and did research at BAIR and LBNL.
Aatif Jiwani
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022