Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Overview

Space-Time Correspondence as a Contrastive Random Walk

This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at NeurIPS 2020.

[Paper] [Project Page] [Slides] [Poster] [Talk]

@inproceedings{jabri2020walk,
    Author = {Allan Jabri and Andrew Owens and Alexei A. Efros},
    Title = {Space-Time Correspondence as a Contrastive Random Walk},
    Booktitle = {Advances in Neural Information Processing Systems},
    Year = {2020},
}

Consider citing our work or acknowledging this repository if you found this code to be helpful :)

Requirements

  • pytorch (>1.3)
  • torchvision (0.6.0)
  • cv2
  • matplotlib
  • skimage
  • imageio

For visualization (--visualize):

  • wandb
  • visdom
  • sklearn

Train

An example training command is:

python -W ignore train.py --data-path /path/to/kinetics/ \
--frame-aug grid --dropout 0.1 --clip-len 4 --temp 0.05 \
--model-type scratch --workers 16 --batch-size 20  \
--cache-dataset --data-parallel --visualize --lr 0.0001

This yields a model with performance on DAVIS as follows (see below for evaluation instructions), provided as pretrained.pth:

 J&F-Mean    J-Mean  J-Recall  J-Decay    F-Mean  F-Recall   F-Decay
  0.67606  0.645902  0.758043   0.2031  0.706219   0.83221  0.246789

Arguments of interest:

  • --dropout: The rate of edge dropout (default 0.1).
  • --clip-len: Length of video sequence.
  • --temp: Softmax temperature.
  • --model-type: Type of encoder. Use scratch or scratch_zeropad if training from scratch. Use imagenet18 to load an Imagenet-pretrained network. Use scratch with --resume if reloading a checkpoint.
  • --batch-size: I've managed to train models with batch sizes between 6 and 24. If you have can afford a larger batch size, consider increasing the --lr from 0.0001 to 0.0003.
  • --frame-aug: grid samples a grid of patches to get nodes; none will just use a single image and use embeddings in the feature map as nodes.
  • --visualize: Log diagonistics to wandb and data visualizations to visdom.

Data

We use the official torchvision.datasets.Kinetics400 class for training. You can find directions for downloading Kinetics here. In particular, the code expects the path given for kinetics to contain a train_256 subdirectory.

You can also provide --data-path with a file with a list of directories of images, or a path to a directory of directory of images. In this case, clips are randomly subsampled from the directory.

Visualization

By default, the training script will log diagnostics to wandb and data visualizations to visdom.

Pretrained Model

You can find the model resulting from the training command above at pretrained.pth. We are still training updated ablation models and will post them when ready.


Evaluation: Label Propagation

The label propagation algorithm is described in test.py. The output of test.py (predicted label maps) must be post-processed for evaluation.

DAVIS

To evaluate a trained model on the DAVIS task, clone the davis2017-evaluation repository, and prepare the data by downloading the 2017 dataset and modifying the paths provided in eval/davis_vallist.txt. Then, run:

Label Propagation:

python test.py --filelist /path/to/davis/vallist.txt \
--model-type scratch --resume ../pretrained.pth --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Though test.py expects a model file created with train.py, it can easily be modified to be used with other networks. Note that we simply use the same temperature used at training time.

You can also run the ImageNet baseline with the command below.

python test.py --filelist /path/to/davis/vallist.txt \
--model-type imagenet18 --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Post-Process:

# Convert
python eval/convert_davis.py --in_folder /save/path/ --out_folder /converted/path --dataset /davis/path/

# Compute metrics
python /path/to/davis2017-evaluation/evaluation_method.py \
--task semi-supervised   --results_path /converted/path --set val \
--davis_path /path/to/davis/

You can generate the above commands with the script below, where removing --dryrun will actually run them in sequence.

python eval/run_test.py --model-path /path/to/model --L 20 --K 10  --T 0.05 --cropSize -1 --dryrun

Test-time Adaptation

To do.

Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022