CondNet: Conditional Classifier for Scene Segmentation

Related tags

Deep LearningCondNet
Overview

CondNet: Conditional Classifier for Scene Segmentation

PWC

PWC

Introduction

The fully convolutional network (FCN) has achieved tremendous success in dense visual recognition tasks, such as scene segmentation. The last layer of FCN is typically a global classifier (1×1 convolution) to recognize each pixel to a semantic label. We empirically show that this global classifier, ignoring the intra-class distinction, may lead to sub-optimal results.

In this work, we present a conditional classifier to replace the traditional global classifier, where the kernels of the classifier are generated dynamically conditioned on the input. The main advantages of the new classifier consist of: (i) it attends on the intra-class distinction, leading to stronger dense recognition capability; (ii) the conditional classifier is simple and flexible to be integrated into almost arbitrary FCN architectures to improve the prediction. Extensive experiments demonstrate that the proposed classifier performs favourably against the traditional classifier on the FCN architecture. The framework equipped with the conditional classifier (called CondNet) achieves new state-of-the-art performances on two datasets.


Major Features

  • Simple and Flexible
  • Incorporated with almost arbitrary FCN architectures
  • Attending on the sample-specific distinction of each category

Results and Models

ADE20K

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-50-D8 512x512 160000 43.68 44.30 config model
CondNet R-101-D8 512x512 160000 45.64 47.12 config model

Pascal Context 59

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-101-D8 480x480 80000 54.29 55.74 config model

Environments

The code is developed using python 3.7 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 8 NVIDIA V100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick Start

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV
  • MMSegmentation

Please refer to the guide for the information about he compatible MMSegmentation and MMCV versions. Please install the correct version of MMCV to avoid installation issues.

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions. Here we use PyTorch 1.6.0 and CUDA 10.1. You may also switch to other version by specifying the version number.

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch

c. Install MMCV following the official instructions. Either mmcv or mmcv-full is compatible with MMSegmentation, but for methods like CCNet and PSANet, CUDA ops in mmcv-full is required.

The pre-build mmcv-full (with PyTorch 1.6 and CUDA 10.1) can be installed by running: (other available versions could be found here)

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Or you should download the cl compiler from web and then set up the path.

Then, clone mmcv from github and install mmcv via pip:

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Or simply:

pip install mmcv

d. Install build requirements

pip install -r requirements.txt

Prepare datasets

It is recommended to symlink the dataset root to $CONDNET/data. If your folder structure is different, you may need to change the corresponding paths in config files.

condnet
├── models
├── tools
├── configs
├── data
│   ├── VOCdevkit
│   │   ├── VOC2012
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClass
│   │   │   ├── ImageSets
│   │   │   │   ├── Segmentation
│   │   ├── VOC2010
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClassContext
│   │   │   ├── ImageSets
│   │   │   │   ├── SegmentationContext
│   │   │   │   │   ├── train.txt
│   │   │   │   │   ├── val.txt
│   │   │   ├── trainval_merged.json
│   │   ├── VOCaug
│   │   │   ├── dataset
│   │   │   │   ├── cls
│   ├── ade
│   │   ├── ADEChallengeData2016
│   │   │   ├── annotations
│   │   │   │   ├── training
│   │   │   │   ├── validation
│   │   │   ├── images
│   │   │   │   ├── training
│   │   │   │   ├── validation

ADE20K

The training and validation set of ADE20K could be download from this link. We may also download test set from here.

Pascal Context

The training and validation set of Pascal Context could be download from here. You may also download test set from here after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here.

If you would like to use Pascal Context dataset, please install Detail and then run the following command to convert annotations into proper format.

python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

More datasets please refer to MMSegmentation.

Training and Testing

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

By default we evaluate the model on the validation set after some iterations, you can change the evaluation interval by adding the interval argument in the training config.

evaluation = dict(interval=4000)  # This evaluate the model per 4000 iterations.

*Important*: The default learning rate in config files is for 4 GPUs and 2 img/gpu (batch size = 4x2 = 8). Equivalently, you may also use 8 GPUs and 1 imgs/gpu since all models using cross-GPU SyncBN.

To trade speed with GPU memory, you may pass in --options model.backbone.with_cp=True to enable checkpoint in backbone.

Training

Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work-dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --no-validate (not suggested): By default, the codebase will perform evaluation at every k iterations during the training. To disable this behavior, use --no-validate.
  • --work-dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file (to continue the training process).
  • --load-from ${CHECKPOINT_FILE}: Load weights from a checkpoint file (to start finetuning for another task).

Difference between resume-from and load-from:

  • resume-from loads both the model weights and optimizer state including the iteration number.
  • load-from loads only the model weights, starts the training from iteration 0.

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need to specify different ports (29500 by default) for each job to avoid communication conflict. Otherwise, there will be error message saying RuntimeError: Address already in use.

If you use dist_train.sh to launch training jobs, you can set the port in commands with environment variable PORT.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use slurm_train.sh to launch training jobs, you can set the port in commands with environment variable MASTER_PORT.

MASTER_PORT=29500 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}
MASTER_PORT=29501 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}

Testing

  • single GPU
  • single node multiple GPU

You can use the following commands to test a dataset.

# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

Optional arguments:

  • RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file. (After mmseg v0.17, the output results become pre-evaluation results or format result paths)
  • EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., mIoU is available for all dataset. Cityscapes could be evaluated by cityscapes as well as standard mIoU metrics.
  • --show: If specified, segmentation results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment, otherwise you may encounter the error like cannot connect to X server.
  • --show-dir: If specified, segmentation results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
  • --eval-options: Optional parameters for dataset.format_results and dataset.evaluate during evaluation. When efficient_test=True, it will save intermediate results to local files to save CPU memory. Make sure that you have enough local storage space (more than 20GB). (efficient_test argument does not have effect after mmseg v0.17, we use a progressive mode to evaluation and format results which can largely save memory cost and evaluation time.)

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

Test CondNet with 4 GPUs, and evaluate the standard mIoU metric.

```shell
./tools/dist_test.sh configs/condnet/condnet_r101-d8_512x512_160k_ade20k.py \
    checkpoints/condnet_r101-d8_512x512_160k_ade20k.pth \
    4 --out results.pkl --eval mIoU
```

Citation

If you find this project useful in your research, please consider cite:

@ARTICLE{Yucondnet21,
  author={Yu, Changqian and Shao, Yuanjie and Gao, Changxin and Sang, Nong},
  journal={IEEE Signal Processing Letters}, 
  title={CondNet: Conditional Classifier for Scene Segmentation}, 
  year={2021},
  volume={28},
  number={},
  pages={758-762},
  doi={10.1109/LSP.2021.3070472}}

Acknowledgement

Thanks to:

Owner
ycszen
ycszen
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022