Motion Reconstruction Code and Data for Skills from Videos (SFV)

Overview

Motion Reconstruction Code and Data for Skills from Videos (SFV)

This repo contains the data and the code for motion reconstruction component of the SFV paper:

SFV: Reinforcement Learning of Physical Skills from Videos
Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey Levine
University of California, Berkeley

Project Page

Teaser Image

Data

The data for the video can be found in this link.
It contains the:

  • Input videos
  • Intermediate 2D OpenPose, tracks, and HMR outputs
  • Result video of before and after motion reconstruction
  • Output of motion reconstruction in bvh used to train the character

See the README in the tar file for more details.

Requirements

  • TensorFlow
  • SMPL
  • Have the same models/ structure as in HMR (you need the trained models and neutral_smpl_with_cocoplus_reg.pkl)

Rotation augmented models

This repo uses fine-tuned models for OpenPose and HMR with rotation augmentation. The models used can be found here: ft-OpenPose, ft-HMR

Steps to run:

  1. python -m run_openpose

  2. python -m refine_video

I recommend starting with the preprocessed data that's packaged with the above link, and start from python -m refine_video. Then run step 1 for your own video.

Comments

Note this repo is more of a research code demo compared to my other project code releases. It's also slightly dated. I'm putting this out there in case this is useful for others. You may need to fix some quirks.

Pull requests/contributions welcome!

License

This particular repo is under BSD but please follow the license agreement for tools that I build on such as SMPL and OpenPose.

June 28 2019.

In this repo, motion reconstruction smoothes HMR output. We recently released the demo for Human Mesh and Motion Recovery (HMMR), which will give you smoother outputs. You can apply motion reconstrution on top of the HMMR outputs, which will be a better starting point. This would probably be the best combination of the tools out there today.

I'm also using 2D pose from OpenPose here and have my own hacky tracking code. However there are more recent tools such as AlphaPose and PoseFlow that will compute the tracklet for you. (We use this in the HMMR codebase).

Fitting the HMMR output to DensePose output will be another simple loss function to add to the motion reconstruction to get a good 3D body fit to a video.

All of these would be a good starter project ;)

Another practical improvements that should be made is that this uses OpenDR renderer to render the results, which is slow and takes up most of the run time. In HMMR we use (the pytorch NMR)[https://github.com/daniilidis-group/neural_renderer] to render the results. The same logic can be adapted here.

Citation

If you use this code for your research, please consider citing:

@article{
	2018-TOG-SFV,
	author = {Peng, Xue Bin and Kanazawa, Angjoo and Malik, Jitendra and Abbeel, Pieter and Levine, Sergey},
	title = {SFV: Reinforcement Learning of Physical Skills from Videos},
	journal = {ACM Trans. Graph.},
	volume = {37},
	number = {6},
	month = nov,
	year = {2018},
	articleno = {178},
	numpages = {14},
	publisher = {ACM},
	address = {New York, NY, USA},
	keywords = {physics-based character animation, computer vision, video imitation, reinforcement learning, motion reconstruction}
} 
@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Regognition (CVPR)},
  year={2018}
}
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023