Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Overview

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

PWC PWC


Results

results on COCO val

Backbone Method Lr Schd PQ Config Download
R-50 Panoptic-SegFormer 1x 48.0 config model
R-50 Panoptic-SegFormer 2x 49.6 config model
R-101 Panoptic-SegFormer 2x 50.6 config model
PVTv2-B5 (much lighter) Panoptic-SegFormer 2x 55.6 config model
Swin-L (window size 7) Panoptic-SegFormer 2x 55.8 config model

Install

Prerequisites

  • Linux
  • Python 3.6+
  • PyTorch 1.5+
  • torchvision
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • mmcv-full==1.3.4
  • mmdet==2.12.0 # higher version may not work
  • timm==0.4.5
  • einops==0.3.0
  • Pillow==8.0.1
  • opencv-python==4.5.2

note: PyTorch1.8 has a bug in its adamw.py and it is solved in PyTorch1.9(see), you can easily solve it by comparing the difference.

install Panoptic SegFormer

python setup.py install 

Datasets

When I began this project, mmdet dose not support panoptic segmentation officially. I convert the dataset from panoptic segmentation format to instance segmentation format for convenience.

1. prepare data (COCO)

cd Panoptic-SegFormer
mkdir datasets
cd datasets
ln -s path_to_coco coco
mkdir annotations/
cd annotations
wget http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
unzip panoptic_annotations_trainval2017.zip

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

2. convert panoptic format to detection format

cd Panoptic-SegFormer
./tools/convert_panoptic_coco.sh coco

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017_detection_format.json
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   ├── panoptic_val2017_detection_format.json
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

Run (panoptic segmentation)

train

single-machine with 8 gpus.

./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 8

test

./tools/dist_test.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py path/to/model.pth 8

Citing

If you use Panoptic SegFormer in your research, please use the following BibTeX entry.

@article{li2021panoptic,
  title={Panoptic SegFormer},
  author={Li, Zhiqi and Wang, Wenhai and Xie, Enze and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Lu, Tong and Luo, Ping},
  journal={arXiv},
  year={2021}
}

Acknowledgement

Mainly based on Defromable DETR from MMdet.

Thanks very much for other open source works: timm, Panoptic FCN, MaskFomer, QueryInst

Comments
  • How demo one picture result ?

    How demo one picture result ?

    Dear friend, Thanks you for your good job. Now we do not want to download coco datasets, just want to give one picture, segment it and show its result. How to do it ? Best regards,

    opened by delldu 3
  • what's pvt_v2_ap in code?

    what's pvt_v2_ap in code?

    I found there are many names that obscure to understand. For example: pvt_v2_ap what that stands for? and what's single_stage_w_mask stands for?

    image

    and those file differences?

    opened by jinfagang 2
  • how to visualize demo image?

    how to visualize demo image?

    Dear friend, how to visualize the segmentation result of custom images? I run the infererce.py and didn’t get a good result. Like this: 000000

    I think there are some faults in my code.

    Here is my code:

    from mmcv.runner import checkpoint
    from mmdet.apis.inference import init_detector,LoadImage, inference_detector
    import easymd
    import cv2
    import random
    import colorsys
    import numpy as np
    
    def random_colors(N, bright=True):
        brightness = 1.0 if bright else 0.7
        hsv = [(i / float(N), 1, brightness) for i in range(N)]
        colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
        random.shuffle(colors)
        return colors
    
    def apply_mask(image, mask, color, alpha=0.5):
        for c in range(3):
            image[:, :, c] = np.where(mask == 0,
                                      image[:, :, c],
                                      image[:, :, c] *
                                      (1 - alpha) + alpha * color[c] * 255)
        return image
    
    config = './configs/panformer/panformer_pvtb5_24e_coco_panoptic.py'
    #checkpoints = './checkpoints/pseg_r101_r50_latest.pth'
    checkpoints = "./checkpoints/panoptic_segformer_pvtv2b5_2x.pth"
    img_path = "img_path "
    mask_save_path = "save_path"
    
    colors = random_colors(80)
    
    model = init_detector(config,checkpoint=checkpoints)
    
    results = inference_detector(model, [img_path])
    
    img = cv2.imread(img_path)
    
    seg = results['segm'][0]
    N = len(seg)
    
    masked_image = img.copy()
    for i in range(N):
        color = colors[i]
        masks = np.sum(seg[i], axis=0)
        masked_image = apply_mask(masked_image, masks, color)
        # for mask in seg[i]:
        #     masked_image = apply_mask(masked_image, mask, color)
    
    # cv2.imshow("a", masked_image)
    
    opened by garriton 0
  • Location Decoder loss

    Location Decoder loss

    https://github.com/zhiqi-li/Panoptic-SegFormer/blob/e604ef810eaf5101106d221db4b6970c2daca5c9/easymd/models/panformer/panformer_head.py#L360-L364

    Why does the location decoder only compute the losses of the first L-1 layers not the whole L layers?

    opened by hust-nj 0
  • Instruction for single GPU run

    Instruction for single GPU run

    Hi thanks for sharing your works. Iwas trying to run it on single gpu. Would you pls add some instructions or scripts to run it in single gpu? That would be a great help.

    kind regards Abdullah

    opened by nazib 1
  • Impossible to debug, single_gpu code paths are broken

    Impossible to debug, single_gpu code paths are broken

    It seems that the multi gpu training and eval works great, however, while trying to debug you're opt for using a single gpu.
    In that case the code breaks in several parts during the evaluation of the validation set.
    Any chance for a hotfix? :)

    To reproduce, try to run the code from PyCharm in debug mode while there's only one GPU available.

    opened by aviadmx 1
  • Why instance annotations are required along panoptic ones?

    Why instance annotations are required along panoptic ones?

    The model solves the panoptic segmentation task, why does the validation dataset uses the instance segmentation annotations?

    data = dict(
        samples_per_gpu=2,
        workers_per_gpu=2,
        train=dict(
            type=dataset_type,
            ann_file= './datasets/annotations/panoptic_train2017_detection_format.json',
            img_prefix=data_root + 'train2017/',
            pipeline=train_pipeline),
        val=dict( 
          
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline),
        test=dict(
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            #ann_file= './datasets/coco/annotations/image_info_test-dev2017.json',
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            #img_prefix=data_root + '/test2017/',
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline)
            )
    

    We eventually use the instances_val2017.json file instead of panoptic_val2017.json

    opened by aviadmx 3
  • Loading checkpoint

    Loading checkpoint

    When loading the Swin-L checkpoint by adding a load_from line to the config configs/panformer/panformer_swinl_24e_coco_panoptic.pyz as following:

    load_from='./pretrained/panoptic_segformer_swinl_2x.pth'
    

    The loading fails with an error about keys mismatch:

    unexpected key in source state_dict: bbox_head.cls_branches2.0.weight, bbox_head.cls_branches2.0.bias, bbox_head.cls_branches2.1.weight, bbox_head.cls_branches2.1.bias, bbox_head.cls_branches2.2.weight, bbox_head.cls_branches2.2.bias, bbox_head.cls_branches2.3.weight, bbox_head.cls_branches2.3.bias, bbox_head.mask_head.blocks.0.head_norm1.weight, bbox_head.mask_head.blocks.0.head_norm1.bias, bbox_head.mask_head.blocks.0.attn.q.weight, bbox_head.mask_head.blocks.0.attn.q.bias, bbox_head.mask_head.blocks.0.attn.k.weight, bbox_head.mask_head.blocks.0.attn.k.bias, bbox_head.mask_head.blocks.0.attn.v.weight, bbox_head.mask_head.blocks.0.attn.v.bias, bbox_head.mask_head.blocks.0.attn.proj.weight, bbox_head.mask_head.blocks.0.attn.proj.bias, bbox_head.mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.0.attn.linear.0.weight, bbox_head.mask_head.blocks.0.attn.linear.0.bias, bbox_head.mask_head.blocks.0.head_norm2.weight, bbox_head.mask_head.blocks.0.head_norm2.bias, bbox_head.mask_head.blocks.0.mlp.fc1.weight, bbox_head.mask_head.blocks.0.mlp.fc1.bias, bbox_head.mask_head.blocks.0.mlp.fc2.weight, bbox_head.mask_head.blocks.0.mlp.fc2.bias, bbox_head.mask_head.blocks.1.head_norm1.weight, bbox_head.mask_head.blocks.1.head_norm1.bias, bbox_head.mask_head.blocks.1.attn.q.weight, bbox_head.mask_head.blocks.1.attn.q.bias, bbox_head.mask_head.blocks.1.attn.k.weight, bbox_head.mask_head.blocks.1.attn.k.bias, bbox_head.mask_head.blocks.1.attn.v.weight, bbox_head.mask_head.blocks.1.attn.v.bias, bbox_head.mask_head.blocks.1.attn.proj.weight, bbox_head.mask_head.blocks.1.attn.proj.bias, bbox_head.mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.1.attn.linear.0.weight, bbox_head.mask_head.blocks.1.attn.linear.0.bias, bbox_head.mask_head.blocks.1.head_norm2.weight, bbox_head.mask_head.blocks.1.head_norm2.bias, bbox_head.mask_head.blocks.1.mlp.fc1.weight, bbox_head.mask_head.blocks.1.mlp.fc1.bias, bbox_head.mask_head.blocks.1.mlp.fc2.weight, bbox_head.mask_head.blocks.1.mlp.fc2.bias, bbox_head.mask_head.blocks.2.head_norm1.weight, bbox_head.mask_head.blocks.2.head_norm1.bias, bbox_head.mask_head.blocks.2.attn.q.weight, bbox_head.mask_head.blocks.2.attn.q.bias, bbox_head.mask_head.blocks.2.attn.k.weight, bbox_head.mask_head.blocks.2.attn.k.bias, bbox_head.mask_head.blocks.2.attn.v.weight, bbox_head.mask_head.blocks.2.attn.v.bias, bbox_head.mask_head.blocks.2.attn.proj.weight, bbox_head.mask_head.blocks.2.attn.proj.bias, bbox_head.mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.2.attn.linear.0.weight, bbox_head.mask_head.blocks.2.attn.linear.0.bias, bbox_head.mask_head.blocks.2.head_norm2.weight, bbox_head.mask_head.blocks.2.head_norm2.bias, bbox_head.mask_head.blocks.2.mlp.fc1.weight, bbox_head.mask_head.blocks.2.mlp.fc1.bias, bbox_head.mask_head.blocks.2.mlp.fc2.weight, bbox_head.mask_head.blocks.2.mlp.fc2.bias, bbox_head.mask_head.blocks.3.head_norm1.weight, bbox_head.mask_head.blocks.3.head_norm1.bias, bbox_head.mask_head.blocks.3.attn.q.weight, bbox_head.mask_head.blocks.3.attn.q.bias, bbox_head.mask_head.blocks.3.attn.k.weight, bbox_head.mask_head.blocks.3.attn.k.bias, bbox_head.mask_head.blocks.3.attn.v.weight, bbox_head.mask_head.blocks.3.attn.v.bias, bbox_head.mask_head.blocks.3.attn.proj.weight, bbox_head.mask_head.blocks.3.attn.proj.bias, bbox_head.mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.3.attn.linear.0.weight, bbox_head.mask_head.blocks.3.attn.linear.0.bias, bbox_head.mask_head.blocks.3.head_norm2.weight, bbox_head.mask_head.blocks.3.head_norm2.bias, bbox_head.mask_head.blocks.3.mlp.fc1.weight, bbox_head.mask_head.blocks.3.mlp.fc1.bias, bbox_head.mask_head.blocks.3.mlp.fc2.weight, bbox_head.mask_head.blocks.3.mlp.fc2.bias, bbox_head.mask_head.attnen.q.weight, bbox_head.mask_head.attnen.q.bias, bbox_head.mask_head.attnen.k.weight, bbox_head.mask_head.attnen.k.bias, bbox_head.mask_head.attnen.linear_l1.0.weight, bbox_head.mask_head.attnen.linear_l1.0.bias, bbox_head.mask_head.attnen.linear_l2.0.weight, bbox_head.mask_head.attnen.linear_l2.0.bias, bbox_head.mask_head.attnen.linear_l3.0.weight, bbox_head.mask_head.attnen.linear_l3.0.bias, bbox_head.mask_head.attnen.linear.0.weight, bbox_head.mask_head.attnen.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm1.weight, bbox_head.mask_head2.blocks.0.head_norm1.bias, bbox_head.mask_head2.blocks.0.attn.q.weight, bbox_head.mask_head2.blocks.0.attn.q.bias, bbox_head.mask_head2.blocks.0.attn.k.weight, bbox_head.mask_head2.blocks.0.attn.k.bias, bbox_head.mask_head2.blocks.0.attn.v.weight, bbox_head.mask_head2.blocks.0.attn.v.bias, bbox_head.mask_head2.blocks.0.attn.proj.weight, bbox_head.mask_head2.blocks.0.attn.proj.bias, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.0.attn.linear.0.weight, bbox_head.mask_head2.blocks.0.attn.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm2.weight, bbox_head.mask_head2.blocks.0.head_norm2.bias, bbox_head.mask_head2.blocks.0.mlp.fc1.weight, bbox_head.mask_head2.blocks.0.mlp.fc1.bias, bbox_head.mask_head2.blocks.0.mlp.fc2.weight, bbox_head.mask_head2.blocks.0.mlp.fc2.bias, bbox_head.mask_head2.blocks.0.self_attention.qkv.weight, bbox_head.mask_head2.blocks.0.self_attention.qkv.bias, bbox_head.mask_head2.blocks.0.self_attention.proj.weight, bbox_head.mask_head2.blocks.0.self_attention.proj.bias, bbox_head.mask_head2.blocks.0.norm3.weight, bbox_head.mask_head2.blocks.0.norm3.bias, bbox_head.mask_head2.blocks.1.head_norm1.weight, bbox_head.mask_head2.blocks.1.head_norm1.bias, bbox_head.mask_head2.blocks.1.attn.q.weight, bbox_head.mask_head2.blocks.1.attn.q.bias, bbox_head.mask_head2.blocks.1.attn.k.weight, bbox_head.mask_head2.blocks.1.attn.k.bias, bbox_head.mask_head2.blocks.1.attn.v.weight, bbox_head.mask_head2.blocks.1.attn.v.bias, bbox_head.mask_head2.blocks.1.attn.proj.weight, bbox_head.mask_head2.blocks.1.attn.proj.bias, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.1.attn.linear.0.weight, bbox_head.mask_head2.blocks.1.attn.linear.0.bias, bbox_head.mask_head2.blocks.1.head_norm2.weight, bbox_head.mask_head2.blocks.1.head_norm2.bias, bbox_head.mask_head2.blocks.1.mlp.fc1.weight, bbox_head.mask_head2.blocks.1.mlp.fc1.bias, bbox_head.mask_head2.blocks.1.mlp.fc2.weight, bbox_head.mask_head2.blocks.1.mlp.fc2.bias, bbox_head.mask_head2.blocks.1.self_attention.qkv.weight, bbox_head.mask_head2.blocks.1.self_attention.qkv.bias, bbox_head.mask_head2.blocks.1.self_attention.proj.weight, bbox_head.mask_head2.blocks.1.self_attention.proj.bias, bbox_head.mask_head2.blocks.1.norm3.weight, bbox_head.mask_head2.blocks.1.norm3.bias, bbox_head.mask_head2.blocks.2.head_norm1.weight, bbox_head.mask_head2.blocks.2.head_norm1.bias, bbox_head.mask_head2.blocks.2.attn.q.weight, bbox_head.mask_head2.blocks.2.attn.q.bias, bbox_head.mask_head2.blocks.2.attn.k.weight, bbox_head.mask_head2.blocks.2.attn.k.bias, bbox_head.mask_head2.blocks.2.attn.v.weight, bbox_head.mask_head2.blocks.2.attn.v.bias, bbox_head.mask_head2.blocks.2.attn.proj.weight, bbox_head.mask_head2.blocks.2.attn.proj.bias, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.2.attn.linear.0.weight, bbox_head.mask_head2.blocks.2.attn.linear.0.bias, bbox_head.mask_head2.blocks.2.head_norm2.weight, bbox_head.mask_head2.blocks.2.head_norm2.bias, bbox_head.mask_head2.blocks.2.mlp.fc1.weight, bbox_head.mask_head2.blocks.2.mlp.fc1.bias, bbox_head.mask_head2.blocks.2.mlp.fc2.weight, bbox_head.mask_head2.blocks.2.mlp.fc2.bias, bbox_head.mask_head2.blocks.2.self_attention.qkv.weight, bbox_head.mask_head2.blocks.2.self_attention.qkv.bias, bbox_head.mask_head2.blocks.2.self_attention.proj.weight, bbox_head.mask_head2.blocks.2.self_attention.proj.bias, bbox_head.mask_head2.blocks.2.norm3.weight, bbox_head.mask_head2.blocks.2.norm3.bias, bbox_head.mask_head2.blocks.3.head_norm1.weight, bbox_head.mask_head2.blocks.3.head_norm1.bias, bbox_head.mask_head2.blocks.3.attn.q.weight, bbox_head.mask_head2.blocks.3.attn.q.bias, bbox_head.mask_head2.blocks.3.attn.k.weight, bbox_head.mask_head2.blocks.3.attn.k.bias, bbox_head.mask_head2.blocks.3.attn.v.weight, bbox_head.mask_head2.blocks.3.attn.v.bias, bbox_head.mask_head2.blocks.3.attn.proj.weight, bbox_head.mask_head2.blocks.3.attn.proj.bias, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.3.attn.linear.0.weight, bbox_head.mask_head2.blocks.3.attn.linear.0.bias, bbox_head.mask_head2.blocks.3.head_norm2.weight, bbox_head.mask_head2.blocks.3.head_norm2.bias, bbox_head.mask_head2.blocks.3.mlp.fc1.weight, bbox_head.mask_head2.blocks.3.mlp.fc1.bias, bbox_head.mask_head2.blocks.3.mlp.fc2.weight, bbox_head.mask_head2.blocks.3.mlp.fc2.bias, bbox_head.mask_head2.blocks.3.self_attention.qkv.weight, bbox_head.mask_head2.blocks.3.self_attention.qkv.bias, bbox_head.mask_head2.blocks.3.self_attention.proj.weight, bbox_head.mask_head2.blocks.3.self_attention.proj.bias, bbox_head.mask_head2.blocks.3.norm3.weight, bbox_head.mask_head2.blocks.3.norm3.bias, bbox_head.mask_head2.blocks.4.head_norm1.weight, bbox_head.mask_head2.blocks.4.head_norm1.bias, bbox_head.mask_head2.blocks.4.attn.q.weight, bbox_head.mask_head2.blocks.4.attn.q.bias, bbox_head.mask_head2.blocks.4.attn.k.weight, bbox_head.mask_head2.blocks.4.attn.k.bias, bbox_head.mask_head2.blocks.4.attn.v.weight, bbox_head.mask_head2.blocks.4.attn.v.bias, bbox_head.mask_head2.blocks.4.attn.proj.weight, bbox_head.mask_head2.blocks.4.attn.proj.bias, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.4.attn.linear.0.weight, bbox_head.mask_head2.blocks.4.attn.linear.0.bias, bbox_head.mask_head2.blocks.4.head_norm2.weight, bbox_head.mask_head2.blocks.4.head_norm2.bias, bbox_head.mask_head2.blocks.4.mlp.fc1.weight, bbox_head.mask_head2.blocks.4.mlp.fc1.bias, bbox_head.mask_head2.blocks.4.mlp.fc2.weight, bbox_head.mask_head2.blocks.4.mlp.fc2.bias, bbox_head.mask_head2.blocks.4.self_attention.qkv.weight, bbox_head.mask_head2.blocks.4.self_attention.qkv.bias, bbox_head.mask_head2.blocks.4.self_attention.proj.weight, bbox_head.mask_head2.blocks.4.self_attention.proj.bias, bbox_head.mask_head2.blocks.4.norm3.weight, bbox_head.mask_head2.blocks.4.norm3.bias, bbox_head.mask_head2.blocks.5.head_norm1.weight, bbox_head.mask_head2.blocks.5.head_norm1.bias, bbox_head.mask_head2.blocks.5.attn.q.weight, bbox_head.mask_head2.blocks.5.attn.q.bias, bbox_head.mask_head2.blocks.5.attn.k.weight, bbox_head.mask_head2.blocks.5.attn.k.bias, bbox_head.mask_head2.blocks.5.attn.v.weight, bbox_head.mask_head2.blocks.5.attn.v.bias, bbox_head.mask_head2.blocks.5.attn.proj.weight, bbox_head.mask_head2.blocks.5.attn.proj.bias, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.5.attn.linear.0.weight, bbox_head.mask_head2.blocks.5.attn.linear.0.bias, bbox_head.mask_head2.blocks.5.head_norm2.weight, bbox_head.mask_head2.blocks.5.head_norm2.bias, bbox_head.mask_head2.blocks.5.mlp.fc1.weight, bbox_head.mask_head2.blocks.5.mlp.fc1.bias, bbox_head.mask_head2.blocks.5.mlp.fc2.weight, bbox_head.mask_head2.blocks.5.mlp.fc2.bias, bbox_head.mask_head2.blocks.5.self_attention.qkv.weight, bbox_head.mask_head2.blocks.5.self_attention.qkv.bias, bbox_head.mask_head2.blocks.5.self_attention.proj.weight, bbox_head.mask_head2.blocks.5.self_attention.proj.bias, bbox_head.mask_head2.blocks.5.norm3.weight, bbox_head.mask_head2.blocks.5.norm3.bias, bbox_head.mask_head2.attnen.q.weight, bbox_head.mask_head2.attnen.q.bias, bbox_head.mask_head2.attnen.k.weight, bbox_head.mask_head2.attnen.k.bias, bbox_head.mask_head2.attnen.linear_l1.0.weight, bbox_head.mask_head2.attnen.linear_l1.0.bias, bbox_head.mask_head2.attnen.linear_l2.0.weight, bbox_head.mask_head2.attnen.linear_l2.0.bias, bbox_head.mask_head2.attnen.linear_l3.0.weight, bbox_head.mask_head2.attnen.linear_l3.0.bias, bbox_head.mask_head2.attnen.linear.0.weight, bbox_head.mask_head2.attnen.linear.0.bias
    
    missing keys in source state_dict: bbox_head.cls_thing_branches.0.weight, bbox_head.cls_thing_branches.0.bias, bbox_head.cls_thing_branches.1.weight, bbox_head.cls_thing_branches.1.bias, bbox_head.cls_thing_branches.2.weight, bbox_head.cls_thing_branches.2.bias, bbox_head.cls_thing_branches.3.weight, bbox_head.cls_thing_branches.3.bias, bbox_head.things_mask_head.blocks.0.head_norm1.weight, bbox_head.things_mask_head.blocks.0.head_norm1.bias, bbox_head.things_mask_head.blocks.0.attn.q.weight, bbox_head.things_mask_head.blocks.0.attn.q.bias, bbox_head.things_mask_head.blocks.0.attn.k.weight, bbox_head.things_mask_head.blocks.0.attn.k.bias, bbox_head.things_mask_head.blocks.0.attn.v.weight, bbox_head.things_mask_head.blocks.0.attn.v.bias, bbox_head.things_mask_head.blocks.0.attn.proj.weight, bbox_head.things_mask_head.blocks.0.attn.proj.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear.0.bias, bbox_head.things_mask_head.blocks.0.head_norm2.weight, bbox_head.things_mask_head.blocks.0.head_norm2.bias, bbox_head.things_mask_head.blocks.0.mlp.fc1.weight, bbox_head.things_mask_head.blocks.0.mlp.fc1.bias, bbox_head.things_mask_head.blocks.0.mlp.fc2.weight, bbox_head.things_mask_head.blocks.0.mlp.fc2.bias, bbox_head.things_mask_head.blocks.1.head_norm1.weight, bbox_head.things_mask_head.blocks.1.head_norm1.bias, bbox_head.things_mask_head.blocks.1.attn.q.weight, bbox_head.things_mask_head.blocks.1.attn.q.bias, bbox_head.things_mask_head.blocks.1.attn.k.weight, bbox_head.things_mask_head.blocks.1.attn.k.bias, bbox_head.things_mask_head.blocks.1.attn.v.weight, bbox_head.things_mask_head.blocks.1.attn.v.bias, bbox_head.things_mask_head.blocks.1.attn.proj.weight, bbox_head.things_mask_head.blocks.1.attn.proj.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear.0.bias, bbox_head.things_mask_head.blocks.1.head_norm2.weight, bbox_head.things_mask_head.blocks.1.head_norm2.bias, bbox_head.things_mask_head.blocks.1.mlp.fc1.weight, bbox_head.things_mask_head.blocks.1.mlp.fc1.bias, bbox_head.things_mask_head.blocks.1.mlp.fc2.weight, bbox_head.things_mask_head.blocks.1.mlp.fc2.bias, bbox_head.things_mask_head.blocks.2.head_norm1.weight, bbox_head.things_mask_head.blocks.2.head_norm1.bias, bbox_head.things_mask_head.blocks.2.attn.q.weight, bbox_head.things_mask_head.blocks.2.attn.q.bias, bbox_head.things_mask_head.blocks.2.attn.k.weight, bbox_head.things_mask_head.blocks.2.attn.k.bias, bbox_head.things_mask_head.blocks.2.attn.v.weight, bbox_head.things_mask_head.blocks.2.attn.v.bias, bbox_head.things_mask_head.blocks.2.attn.proj.weight, bbox_head.things_mask_head.blocks.2.attn.proj.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear.0.bias, bbox_head.things_mask_head.blocks.2.head_norm2.weight, bbox_head.things_mask_head.blocks.2.head_norm2.bias, bbox_head.things_mask_head.blocks.2.mlp.fc1.weight, bbox_head.things_mask_head.blocks.2.mlp.fc1.bias, bbox_head.things_mask_head.blocks.2.mlp.fc2.weight, bbox_head.things_mask_head.blocks.2.mlp.fc2.bias, bbox_head.things_mask_head.blocks.3.head_norm1.weight, bbox_head.things_mask_head.blocks.3.head_norm1.bias, bbox_head.things_mask_head.blocks.3.attn.q.weight, bbox_head.things_mask_head.blocks.3.attn.q.bias, bbox_head.things_mask_head.blocks.3.attn.k.weight, bbox_head.things_mask_head.blocks.3.attn.k.bias, bbox_head.things_mask_head.blocks.3.attn.v.weight, bbox_head.things_mask_head.blocks.3.attn.v.bias, bbox_head.things_mask_head.blocks.3.attn.proj.weight, bbox_head.things_mask_head.blocks.3.attn.proj.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear.0.bias, bbox_head.things_mask_head.blocks.3.head_norm2.weight, bbox_head.things_mask_head.blocks.3.head_norm2.bias, bbox_head.things_mask_head.blocks.3.mlp.fc1.weight, bbox_head.things_mask_head.blocks.3.mlp.fc1.bias, bbox_head.things_mask_head.blocks.3.mlp.fc2.weight, bbox_head.things_mask_head.blocks.3.mlp.fc2.bias, bbox_head.things_mask_head.attnen.q.weight, bbox_head.things_mask_head.attnen.q.bias, bbox_head.things_mask_head.attnen.k.weight, bbox_head.things_mask_head.attnen.k.bias, bbox_head.things_mask_head.attnen.linear_l1.0.weight, bbox_head.things_mask_head.attnen.linear_l1.0.bias, bbox_head.things_mask_head.attnen.linear_l2.0.weight, bbox_head.things_mask_head.attnen.linear_l2.0.bias, bbox_head.things_mask_head.attnen.linear_l3.0.weight, bbox_head.things_mask_head.attnen.linear_l3.0.bias, bbox_head.things_mask_head.attnen.linear.0.weight, bbox_head.things_mask_head.attnen.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm1.weight, bbox_head.stuff_mask_head.blocks.0.head_norm1.bias, bbox_head.stuff_mask_head.blocks.0.attn.q.weight, bbox_head.stuff_mask_head.blocks.0.attn.q.bias, bbox_head.stuff_mask_head.blocks.0.attn.k.weight, bbox_head.stuff_mask_head.blocks.0.attn.k.bias, bbox_head.stuff_mask_head.blocks.0.attn.v.weight, bbox_head.stuff_mask_head.blocks.0.attn.v.bias, bbox_head.stuff_mask_head.blocks.0.attn.proj.weight, bbox_head.stuff_mask_head.blocks.0.attn.proj.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm2.weight, bbox_head.stuff_mask_head.blocks.0.head_norm2.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.0.norm3.weight, bbox_head.stuff_mask_head.blocks.0.norm3.bias, bbox_head.stuff_mask_head.blocks.1.head_norm1.weight, bbox_head.stuff_mask_head.blocks.1.head_norm1.bias, bbox_head.stuff_mask_head.blocks.1.attn.q.weight, bbox_head.stuff_mask_head.blocks.1.attn.q.bias, bbox_head.stuff_mask_head.blocks.1.attn.k.weight, bbox_head.stuff_mask_head.blocks.1.attn.k.bias, bbox_head.stuff_mask_head.blocks.1.attn.v.weight, bbox_head.stuff_mask_head.blocks.1.attn.v.bias, bbox_head.stuff_mask_head.blocks.1.attn.proj.weight, bbox_head.stuff_mask_head.blocks.1.attn.proj.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.1.head_norm2.weight, bbox_head.stuff_mask_head.blocks.1.head_norm2.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.1.norm3.weight, bbox_head.stuff_mask_head.blocks.1.norm3.bias, bbox_head.stuff_mask_head.blocks.2.head_norm1.weight, bbox_head.stuff_mask_head.blocks.2.head_norm1.bias, bbox_head.stuff_mask_head.blocks.2.attn.q.weight, bbox_head.stuff_mask_head.blocks.2.attn.q.bias, bbox_head.stuff_mask_head.blocks.2.attn.k.weight, bbox_head.stuff_mask_head.blocks.2.attn.k.bias, bbox_head.stuff_mask_head.blocks.2.attn.v.weight, bbox_head.stuff_mask_head.blocks.2.attn.v.bias, bbox_head.stuff_mask_head.blocks.2.attn.proj.weight, bbox_head.stuff_mask_head.blocks.2.attn.proj.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.2.head_norm2.weight, bbox_head.stuff_mask_head.blocks.2.head_norm2.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.2.norm3.weight, bbox_head.stuff_mask_head.blocks.2.norm3.bias, bbox_head.stuff_mask_head.blocks.3.head_norm1.weight, bbox_head.stuff_mask_head.blocks.3.head_norm1.bias, bbox_head.stuff_mask_head.blocks.3.attn.q.weight, bbox_head.stuff_mask_head.blocks.3.attn.q.bias, bbox_head.stuff_mask_head.blocks.3.attn.k.weight, bbox_head.stuff_mask_head.blocks.3.attn.k.bias, bbox_head.stuff_mask_head.blocks.3.attn.v.weight, bbox_head.stuff_mask_head.blocks.3.attn.v.bias, bbox_head.stuff_mask_head.blocks.3.attn.proj.weight, bbox_head.stuff_mask_head.blocks.3.attn.proj.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.3.head_norm2.weight, bbox_head.stuff_mask_head.blocks.3.head_norm2.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.3.norm3.weight, bbox_head.stuff_mask_head.blocks.3.norm3.bias, bbox_head.stuff_mask_head.blocks.4.head_norm1.weight, bbox_head.stuff_mask_head.blocks.4.head_norm1.bias, bbox_head.stuff_mask_head.blocks.4.attn.q.weight, bbox_head.stuff_mask_head.blocks.4.attn.q.bias, bbox_head.stuff_mask_head.blocks.4.attn.k.weight, bbox_head.stuff_mask_head.blocks.4.attn.k.bias, bbox_head.stuff_mask_head.blocks.4.attn.v.weight, bbox_head.stuff_mask_head.blocks.4.attn.v.bias, bbox_head.stuff_mask_head.blocks.4.attn.proj.weight, bbox_head.stuff_mask_head.blocks.4.attn.proj.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.4.head_norm2.weight, bbox_head.stuff_mask_head.blocks.4.head_norm2.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.4.norm3.weight, bbox_head.stuff_mask_head.blocks.4.norm3.bias, bbox_head.stuff_mask_head.blocks.5.head_norm1.weight, bbox_head.stuff_mask_head.blocks.5.head_norm1.bias, bbox_head.stuff_mask_head.blocks.5.attn.q.weight, bbox_head.stuff_mask_head.blocks.5.attn.q.bias, bbox_head.stuff_mask_head.blocks.5.attn.k.weight, bbox_head.stuff_mask_head.blocks.5.attn.k.bias, bbox_head.stuff_mask_head.blocks.5.attn.v.weight, bbox_head.stuff_mask_head.blocks.5.attn.v.bias, bbox_head.stuff_mask_head.blocks.5.attn.proj.weight, bbox_head.stuff_mask_head.blocks.5.attn.proj.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.5.head_norm2.weight, bbox_head.stuff_mask_head.blocks.5.head_norm2.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.5.norm3.weight, bbox_head.stuff_mask_head.blocks.5.norm3.bias, bbox_head.stuff_mask_head.attnen.q.weight, bbox_head.stuff_mask_head.attnen.q.bias, bbox_head.stuff_mask_head.attnen.k.weight, bbox_head.stuff_mask_head.attnen.k.bias, bbox_head.stuff_mask_head.attnen.linear_l1.0.weight, bbox_head.stuff_mask_head.attnen.linear_l1.0.bias, bbox_head.stuff_mask_head.attnen.linear_l2.0.weight, bbox_head.stuff_mask_head.attnen.linear_l2.0.bias, bbox_head.stuff_mask_head.attnen.linear_l3.0.weight, bbox_head.stuff_mask_head.attnen.linear_l3.0.bias, bbox_head.stuff_mask_head.attnen.linear.0.weight, bbox_head.stuff_mask_head.attnen.linear.0.bias
    
    opened by aviadmx 3
  • ImportError Libtorch_cpu.so: undefined symbol

    ImportError Libtorch_cpu.so: undefined symbol

    Thank you for this awesome work

    Unfortunately I can't run the training because I get the following error

    ./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 1
    + CONFIG=./configs/panformer/panformer_r50_24e_coco_panoptic.py
    + GPUS=1
    + PORT=29503
    ++ dirname ./tools/dist_train.sh
    ++ dirname ./tools/dist_train.sh
    + PYTHONPATH=./tools/..:
    + python -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 ./tools/train.py ./configs/panformer/panformer_r50_24e_coco_panoptic.py --launcher pytorch --deterministic
    Traceback (most recent call last):
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 183, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 109, in _get_module_details
        __import__(pkg_name)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/__init__.py", line 197, in <module>
        from torch._C import *  # noqa: F403
    ImportError: /home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so: undefined symbol: _ZNK3c1010TensorImpl23shallow_copy_and_detachERKNS_15VariableVersionEb
    

    This is my environment:

    screen screen1

    opened by EnnioEvo 0
Owner
Nanjing University, China.
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022