A simple and lightweight genetic algorithm for optimization of any machine learning model

Overview

geneticml

Actions Status CodeQL PyPI License

This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model.

Installation

Use pip to install the package from PyPI:

pip install geneticml

Usage

This package provides a easy way to create estimators and perform the optimization with genetic algorithms. The example below describe in details how to create a simulation with genetic algorithms using evolutionary approach to train a sklearn.neural_network.MLPClassifier. A full list of examples could be found here.

from geneticml.optimizers import GeneticOptimizer
from geneticml.strategy import EvolutionaryStrategy
from geneticml.algorithms import EstimatorBuilder
from metrics import metric_accuracy
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

if __name__ == "__main__":

    seed = 11412

    # Creates an estimator
    estimator = EstimatorBuilder()\
        .of(model_type=MLPClassifier)\
        .fit_with(func=fit)\
        .predict_with(func=predict)\
        .build()

    # Defines a strategy for the optimization
    strategy = EvolutionaryStrategy(
        estimator_type=estimator,
        parameters=parameters,
        retain=0.4,
        random_select=0.1,
        mutate_chance=0.2,
        max_children=2,
        random_state=seed
    )

    # Creates the optimizer
    optimizer = GeneticOptimizer(strategy=strategy)

    # Loads the data
    data = load_iris()

    # Defines the metric
    metric = metric_accuracy
    greater_is_better = True

    # Create the simulation using the optimizer and the strategy
    models = optimizer.simulate(
        data=data.data, 
        target=data.target,
        generations=generations,
        population=population,
        evaluation_function=metric,
        greater_is_better=greater_is_better,
        verbose=True
    )

The estimator is the way you define an algorithm or a class that will be used for model instantiation

estimator = EstimatorBuilder().of(model_type=MLPClassifier).fit_with(func=fit).predict_with(func=predict).build()

You need to speficy a custom fit and predict functions. These functions need to use the same signature than the below ones. This happens because the algorithm is generic and needs to know how to perform the fit and predict functions for the models.

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

Custom strategy

You can create custom strategies for the optimizers by extending the geneticml.strategy.BaseStrategy and implementing the execute(...) function.

class MyCustomStrategy(BaseStrategy):
    def __init__(self, estimator_type: Type[BaseEstimator]) -> None:
        super().__init__(estimator_type)

    def execute(self, population: List[Type[T]]) -> List[T]:
        return population

The custom strategies will allow you to create optimization strategies to archive your goals. We currently have the evolutionary strategy but you can define your own :)

Custom optimizer

You can create custom optimizers by extending the geneticml.optimizers.BaseOptimizer and implementing the simulate(...) function.

class MyCustomOptimizer(BaseOptimizer):
    def __init__(self, strategy: Type[BaseStrategy]) -> None:
        super().__init__(strategy)

    def simulate(self, data, target, verbose: bool = True) -> List[T]:
        """
        Generate a network with the genetic algorithm.

        Parameters:
            data (?): The data used to train the algorithm
            target (?): The targets used to train the algorithm
            verbose (bool): True if should verbose or False if not

        Returns:
            (List[BaseEstimator]): A list with the final population sorted by their loss
        """
        estimators = self._strategy.create_population()
        for x in estimators:
            x.fit(data, target)
            y_pred = x.predict(target)
        pass 

Custom optimizers will let you define how you want your algorithm to optimize the selected strategy. You can also combine custom strategies and optimizers to archive your desire objective.

Testing

The following are the steps to create a virtual environment into a folder named "venv" and install the requirements.

# Create virtualenv
python3 -m venv venv
# activate virtualenv
source venv/bin/activate
# update packages
pip install --upgrade pip setuptools wheel
# install requirements
python setup.py install

Tests can be run with python setup.py test when the virtualenv is active.

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide. There is also an overview on GitHub.

If you are simply looking to start working with the geneticml codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. Or maybe through using geneticml you have an idea of your own or are looking for something in the documentation and thinking โ€˜this can be improvedโ€™...you can do something about it!

Feel free to ask questions on the mailing the contributors.

Changelog

1.0.3 - Included pytorch example

1.0.2 - Minor fixes on naming

1.0.1 - README fixes

1.0.0 - First release

You might also like...
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

A Lightweight Hyperparameter Optimization Tool ๐Ÿš€
A Lightweight Hyperparameter Optimization Tool ๐Ÿš€

Lightweight Hyperparameter Optimization ๐Ÿš€ The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
Comments
  • feature/data_sampling

    feature/data_sampling

    We added support to run your own data sampling (e.g., imblearn.SMOTE) and use the genetic algorithms to find the best set parameters for them. Also, you can find the best set of parameters for your machine learning model at same time that find the best minority class size that maximizes the model score

    opened by albarsil 0
Releases(1.0.8)
Owner
Allan Barcelos
Lead Data Scientist, Conference Speaker, Startup Mentor and AI Consultant
Allan Barcelos
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website โ€ข STVG Demo โ€ข Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

ฮ -NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
๐Ÿ˜Š Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022