Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

Overview

PWC

SEAM Match-RCNN

Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper

CC BY-NC-SA 4.0

Installation

Requirements:

  • Pytorch 1.5.1 or more recent, with cudatoolkit (10.2)
  • torchvision
  • tensorboard
  • cocoapi
  • OpenCV Python
  • tqdm
  • cython
  • CUDA >= 10

Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name seam -y python=3
conda activate seam

pip install cython tqdm opencv-python

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

conda install tensorboard

export INSTALL_DIR=$PWD

# install pycocotools
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# download SEAM
cd $INSTALL_DIR
git clone https://github.com/VIPS4/SEAM-Match-RCNN.git
cd SEAM-Match-RCNN
mkdir data
mkdir ckpt

unset INSTALL_DIR

Dataset

SEAM Match-RCNN has been trained and test on MovingFashion and DeepFashion2 datasets. Follow the instruction to download and extract the datasets.

We suggest to download the datasets inside the folder data.

MovingFashion

MovingFashion dataset is available for academic purposes here.

Deepfashion2

DeepFashion2 dataset is available here. You need fill in the form to get password for unzipping files.

Once the dataset will be extracted, use the reserved DeepFtoCoco.py script to convert the annotations in COCO format, specifying dataset path.

python DeepFtoCoco.py --path <dataset_root>

Training

We provide the scripts to train both Match-RCNN and SEAM Match-RCNN. Check the scripts for all the possible parameters.

Single GPU

#training of Match-RCNN
python train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path> 

#training on movingfashion
python train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>


#training on multi-deepfashion2
python train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>

Multi GPU

We use internally torch.distributed.launch in order to launch multi-gpu training. This utility function from PyTorch spawns as many Python processes as the number of GPUs we want to use, and each Python process will only use a single GPU.

#training of Match-RCNN
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path>

#training on movingfashion
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

#training on multi-deepfashion2
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

Pre-Trained models

It is possibile to start training using the MatchRCNN pre-trained model.

[MatchRCNN] Pre-trained model on Deepfashion2 is available to download here. This model can be used to start the training at the second phase (training directly SEAM Match-RCNN).

We suggest to download the model inside the folder ckpt.

Evaluation

To evaluate the models of SEAM Match-RCNN please use the following scripts.

#evaluation on movingfashion
python evaluate_movingfashion.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>


#evaluation on multi-deepfashion2
python evaluate_multiDF2.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>

Citation

@misc{godi2021movingfashion,
      title={MovingFashion: a Benchmark for the Video-to-Shop Challenge}, 
      author={Marco Godi and Christian Joppi and Geri Skenderi and Marco Cristani},
      year={2021},
      eprint={2110.02627},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
HumaticsLAB
Video and Image Processing for Fashion
HumaticsLAB
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022