A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Overview

Imaging Transcriptomics

DOI License: GPL v3 Maintainer Generic badge Documentation Status

Imaging-transcriptomics_overwiew

Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some property of brain structure or function as measured by neuroimaging (e.g., MRI, fMRI, PET).


The imaging-transcriptomics package allows performing imaging transcriptomics analysis on a neuroimaging scan (e.g., PET, MRI, fMRI...).

The software is implemented in Python3 (v.3.7), its source code is available on GitHub, it can be installed via Pypi and is released under the GPL v3 license.

NOTE Versions from v1.0.0 are or will be maintained. The original script linked by the BioRxiv preprint (v0.0) is still available on GitHub but no changes will be made to that code. If you have downloaded or used that script please update to the newer version by installing this new version.

Installation

NOTE We recommend to install the package in a dedicated environment of your choice (e.g., venv or anaconda). Once you have created your environment and you have activated it, you can follow the below guide to install the package and dependencies. This process will avoid clashes between conflicting packages that could happen during/after the installation.

To install the imaging-transcriptomics Python package, first you will need to install a packages that can't be installed directly from PyPi, but require to be downloaded from GitHub. The package to install is pypyls. To install this package you can follow the installation on the documentation for the package or simply run the command

pip install -e git+https://github.com/netneurolab/pypyls.git/#egg=pyls

to download the package, and its dependencies directly from GitHub by using pip.

Once this package is installed you can install the imaging-transcriptomics package by running

pip install imaging-transcriptomics

Usage

Once installed the software can be used in two ways:

  • as standalone script
  • as part of some python script

WARNING Before running the script make sure the Pyhton environment where you have installed the package is activated.

Standalone script


To run the standalone script from the terminal use the command:

imagingtranscriptomics options

The options available are:

  • -i (--input): Path to the imaging file to analise. The path should be given to the program as an absolute path (e.g., /Users/myusername/Documents/my_scan.nii, since a relative path could raise permission errors and crashes. The script only accepts imaging files in the NIfTI format (.nii, .nii.gz).
  • -v (--variance): Amount of variance that the PLS components must explain. This MUST be in the range 0-100.

    NOTE: if the variance given as input is in the range 0-1 the script will treat this as 30% the same way as if the number was in the range 10-100 (e.g., the script treats the inputs -v 30 and -v 0.3 in the exact same way and the resulting components will explain 30% of the variance).

  • -n (--ncomp): Number of components to be used in the PLS regression. The number MUST be in the range 1-15.
  • --corr: Run the analysis using Spearman correlation instead of PLS.

    NOTE: if you run with the --corr command no other input is required, apart from the input scan (-i).

  • -o (--output) (optional): Path where to save the results. If none is provided the results will be saved in the same directory as the input scan.

WARNING: The -i flag is MANDATORY to run the script, and so is one, and only one, of the -n or -v flags. These last two are mutually exclusive, meaning that ONLY one of the two has to be given as input.

Part of Python script


When used as part of a Python script the library can be imported as:

import imaging_transcriptomics as imt

The core class of the package is the ImagingTranscriptomics class which gives access to the methods used in the standalone script. To use the analysis in your scripts you can initialise the class and then simply call the ImagingTranscriptomics().run() method.

import numpy as np
import imaging_transcriptomics as imt
my_data = np.ones(41)  # MUST be of size 41 
                       # (corresponds to the regions in left hemisphere of the DK atlas)

analysis = imt.ImagingTranscriptomics(my_data, n_components=1)
analysis.run()
# If instead of running PLS you want to analysze the data with correlation you can run the analysis with:
analysis.run(method="corr")

Once completed the results will be part of the analysis object and can be accessed with analysis.gene_results.

The import of the imaging_transcriptomics package will import other helpful functions for input and reporting. For a complete explanation of this please refer to the official documentation of the package.

Documentation

The documentation of the script is available at imaging-transcriptomics.rtfd.io/.

Troubleshooting

For any problems with the software you can open an issue in GitHub or contact the maintainer) of the package.

Citing

If you publish work using imaging-transcriptomics as part of your analysis please cite:

Imaging transcriptomics: Convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Daniel Martins, Alessio Giacomel, Steven CR Williams, Federico Turkheimer, Ottavia Dipasquale, Mattia Veronese, PET templates working group. bioRxiv 2021.06.18.448872; doi: https://doi.org/10.1101/2021.06.18.448872

Imaging-transcriptomics: Second release update (v1.0.2).Alessio Giacomel, & Daniel Martins. (2021). Zenodo. https://doi.org/10.5281/zenodo.5726839

Comments
  • pip installation can not resolve enigmatoolbox dependencies

    pip installation can not resolve enigmatoolbox dependencies

    After pip install -e git+https://github.com/netneurolab/pypyls.git/#egg=pyls and pip install imaging-transcriptomics in a new conda environment with Python=3.8, an error was occurred when import imaging-transcriptomics package that it can't find the module named enigmatoolbox. I figured out that the enigmatoolbox package seems can not be resolve by pip installation automatically, so I have to install the enigmatoolbox package from Github manually, with the code bellow according to the document of enigmatoolbox:

    git clone https://github.com/MICA-MNI/ENIGMA.git
    cd ENIGMA
    python setup.py install
    
    opened by YCHuang0610 4
  • DK atlas regions

    DK atlas regions

    Dear alegiac95,

    thanks for providing the scripts! I have just gone through the paper and description of this GitHub repo and I want to adapt your software to my project. However, I use the typical implementation of the DK from Freesurfer with 34 cortical DK ROIs instead of the 41 ROIs that you have used and, if I'm not mistaken, 41 ROIs are required to implement the script as ist is. Is it possible to change the input to other cortical parcellations as well (i.e., DK-34)?

    Cheers, Melissa

    enhancement 
    opened by Melissa1909 3
  • Script not calling the correct python version

    Script not calling the correct python version

    The script in version v1.0.0 is invoking the #!/usr/bin/env python interpreter, which could generate some issue if you default python is python2 (e.g., in older MacOS versions).

    bug 
    opened by alegiac95 1
  • Version 1.1.0

    Version 1.1.0

    Updated the scripts with:

    • support for both full brain analysis and cortical regions only
    • GSEA analysis (both during the analysis and as a separate script)
    • pdf report of the analysis
    opened by alegiac95 0
  • clean code and fix test

    clean code and fix test

    This commit does an extensive code cleaning following the PEP8 standard. It also fixes a test that was most probably intended for previous unstable versions of the software.

    Still to do:

    • Remove logging
    opened by matteofrigo 0
  • Add mathematical background on PLS

    Add mathematical background on PLS

    A more detailed explanation on PLS model and regression is required in the docs.

    • [ ] Add a general mathematical formulation of PLS
    • [ ] Use of PLS in neuroimaging applications
    • [ ] Description of the SIMPLS algorithm used by pypls

    In addition provide some background on correlation, since it is now added to the methods available in the python package/script

    documentation 
    opened by alegiac95 0
Releases(v.1.1.8)
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022