Binary LSTM model for text classification

Overview

Visits Badge Slack

Text Classification

The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts related to the Ministry of Emergency Situations.


Brief Contents

Project Components

The block contains the structure of the project, as well as a brief excerpt from the files, a more detailed description is located inside each module.

model_predict.py - The module is designed to predict the topic of the text, whether the text belongs to the structure of the Ministry of Emergency Situations or not.

model_train.py - The module is designed to connect all the modules of the package and start training the neural network. Contains 5 functions that access certain modules. The output is the coefficients (weights) of the neural network.

model_evaluation.py - The module is designed to evaluate a neural network model using various metrics.

model.py - The module contains the architecture of the model and a function for its training.

metrics.py - The module contains Metrics for evaluating the effectiveness of classification of neural network models.

data.py - The module is designed to prepare input data for a neural network (split into training, test and validation dataset).

parser.py - The module is designed for parsing html files of scientific articles from the data folder, as well as for parsing certain sites.

text_processing.py - This is a module designed for processing text in Russian and English (removing extra characters, reducing to lowercase, removing stopwords, removing punctuation, stemming).

weights.h5 - Coefficients of the trained neural network.

MCHS_2300.json - Texts that relate to the structure of the Ministry of Emergency Situations (news about emergencies, terms of the Ministry of Emergency Situations).

topic_full.json - Contains texts related to a comprehensive topic. The text data was obtained using parsing sites.

Input Data

A sample of 4,300 texts was used as input, of which 2,800 texts were labeled 1:

  1. 2300 texts were obtained by parsing sites such as rg.ru, iz.ru and others;
  2. 500 scientific articles were marked by an expert manually (scientific articles are intended for further development of the model, in particular, the classification of texts on 3 topics: Comprehensive topics, the topic of the Ministry of Emergency Situations, the topic "Disaster medicine in emergency situations", at the moment, a dataset is being formed on the topic "Disaster Medicine in Emergency situations" and a comprehensive topic is being finalized).

The remaining 1,500 texts were obtained by parsing a scientific journal on comprehensive topics and were labeled 0. The data was divided into 3 data sets: training, validation and test. Data on scientific articles on the topic "Disaster Medicine in Emergency situations" can be found in Scientific articles.

Neural Network Architecture

Long Short-Term Memory~(LSTM) was introduced by S. Hochreiter and J. Schmidhuber and developed by many research scientists. To deal with these problems Long Short-Term Memory (LSTM) is a special type of RNN that preserves long term dependency in a more effective way compared to the basic RNNs. This is particularly useful to overcome vanishing gradient problem. Although LSTM has a chain-like structure similar to RNN, LSTM uses multiple gates to carefully regulate the amount of information that will be allowed into each node state. Figure shows the basic cell of a LSTM model.

A recurrent neural network with long-term short-term memory (LSTM) was used as a model. The purpose of the model was to recognize text related to the structure of the Ministry of Emergency Situations.

def model_lstm(self, show_structure: bool = False):

  model = Sequential()
  model.add(Embedding(self.max_words, 12, input_length=self.max_len))
  model.add(LSTM(6))
  model.add(Dropout(0.6))
  model.add(Dense(1, activation='sigmoid'))
  model.compile(optimizer='adam',
                loss='binary_crossentropy',
                metrics='accuracy')
  if show_structure:
      model.summary()
  return model

In more detail . . .

LSTM Model


Evaluation of the Model

The neural network was trained using the "accuracy" metric and the binary_cross entropy function. The accuracy of the model is 98.7%. The model was evaluated using the AUC metric. The AUC-ROC was constructed for the threshold values of the binary classification from 0 to 1 with a step of 0.0002. According to the following formula, the optimal threshold value was selected:

optimal = |TPR - (1-FPR)|, optimal -> min

TPR = The number of true positives among all class labels that were defined as "positive".

FPR = The number of truly negative labels among all the class labels that were defined as "negative".

At each step, optimal was calculated and written to the dictionary, where the key was optimal, and the value was the threshold. Next, the smallest optimal was selected, which corresponded to the optimal threshold value.

Installation

  1. git clone https://github.com/Non1ce/Neural_Network_Model.git
  2. git clone https://github.com/Non1ce/Data_LSTM.git to the folder \data\scientific_articles
  3. cd Transformer-Bert
  4. pip install -r requirements.txt
  5. Run the module model_predict.py to predict the topic of a scientific article, if you need to train the model, you need to run a module model_train.py.
  6. To evaluate the model, you need to run the module model_evaluation.py.

Version

Requirements

License

MIT License

Copyright (c) 2021-2025 Non1ce

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

To the top of the page

You might also like...
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

Text-Summarization-using-NLP - Text Summarization using NLP  to fetch BBC News Article and summarize its text and also it includes custom article Summarization
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Releases(Non1ce)
Owner
Nikita Elenberger
Junior Data Scientist (Python)
Nikita Elenberger
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022