OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

Related tags

Deep Learningoreo
Overview

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

Video demo

We here provide a video demo from confounded Enduro environment (see Figure 8 of the main draft). We also visualize the spatial attention map from a convolutional encoder trained with BC (medium) and OREO (right).

Enduro_total_demo_cropped

Installation

OREO requires CUDA 10.1 to run.

Install the dependencies:

conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch
pip install dopamine_rl sklearn tqdm kornia dropblock atari-py==0.2.6 gsutil

Download DQN Replay dataset for expert demonstrations on Atari environments:

mkdir DATAPATH
cp download.sh DATAPATH
cd DATAPATH
sh download.sh

Pre-training

We here provide beta-VAE (for CCIL) and VQ-VAE (for CRLR and OREO) pretraining scripts. For other datasets, change the --env option.

beta-VAE

CUDA_VISIBLE_DEVICES=0,1,2,3 python atari_beta_vae.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --seed 1 --ch_div 4 --lmd 10

VQ-VAE

CUDA_VISIBLE_DEVICES=0,1,2,3 python atari_vqvae.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --seed 1

Training BC policy

We here provide training scripts for baselines and OREO. For other datasets, change the --env, --beta_vae_path, and --vqvae_path options.

Behavioral cloning

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --num_episodes 20 --num_eval_episodes 100

Dropout

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --original_dropout --prob 0.5 --num_episodes 20 --num_eval_episodes 100

DropBlock

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --dropblock --prob 0.3 --num_episodes 20 --num_eval_episodes 100

Cutout

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --input_cutout --num_episodes 20 --num_eval_episodes 100

RandomShift

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --random_shift --num_episodes 20 --num_eval_episodes 100

CCIL (w/o interaction)

CUDA_VISIBLE_DEVICES=0 python atari_beta_vae_actor.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --num_eval_episodes 100 --seed 1 --eval_interval 1000 --prob 0.5 --ch_div 4 --beta_vae_path models_beta_vae_coord_conv_chdiv4_actor_lmd10.0/KungFuMaster_s1_epi20_con1_seed1_zdim50_beta4_kltol0_ep1000_beta_vae.pth

CRLR

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor_crlr.py --fixed_size 15000 --num_sub_iters 10 --eval_interval 10 --save_interval 10 --n_epochs 10 --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --num_eval_episodes 100 --seed 1 --vqvae_path models_vqvae/KungFuMaster_s1_epi20_con1_seed1_ne512_c0.25_ep1000_vqvae.pth

OREO

CUDA_VISIBLE_DEVICES=0 python atari_vqvae_oreo.py --env=KungFuMaster --datapath DATAPATH --num_mask 5 --num_episodes 20 --num_eval_episodes 100 --seed 1 --eval_interval 1000 --prob 0.5 --vqvae_path models_vqvae/KungFuMaster_s1_epi20_con1_seed1_ne512_c0.25_ep1000_vqvae.pth
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022