A set of examples around hub for creating and processing datasets

Related tags

Deep Learningexamples
Overview


Examples for Hub - Dataset Format for AI

A repository showcasing examples of using Hub

Colab Tutorials

Notebook Link
Getting Started with Hub Open In Colab
Creating Object Detection Datasets Open In Colab
Creating Complex Detection Datasets Open In Colab
Data Processing Using Parallel Computing Open In Colab
Training an Image Classification Model in PyTorch Open In Colab

Getting Started with Hub 🚀

Installation

Hub is written in 100% python and can be quickly installed using pip.

pip3 install hub

Creating Datasets

A hub dataset can be created in various locations (Storage providers). This is how the paths for each of them would look like:

Storage provider Example path
Hub cloud hub://user_name/dataset_name
AWS S3 s3://bucket_name/dataset_name
GCP gcp://bucket_name/dataset_name
Local storage path to local directory
In-memory mem://dataset_name

Let's create a dataset in the Hub cloud. Create a new account with Hub from the terminal using activeloop register if you haven't already. You will be asked for a user name, email id and passowrd. The user name you enter here will be used in the dataset path.

$ activeloop register
Enter your details. Your password must be atleast 6 characters long.
Username:
Email:
Password:

Initialize an empty dataset in the hub cloud:

import hub

ds = hub.empty("hub://<USERNAME>/test-dataset")

Next, create a tensor to hold images in the dataset we just initialized:

images = ds.create_tensor("images", htype="image", sample_compression="jpg")

Assuming you have a list of image file paths, lets upload them to the dataset:

image_paths = ...
with ds:
    for image_path in image_paths:
        image = hub.read(image_path)
        ds.images.append(image)

Alternatively, you can also upload numpy arrays. Since the images tensor was created with sample_compression="jpg", the arrays will be compressed with jpeg compression.

import numpy as np

with ds:
    for _ in range(1000):  # 1000 random images
        radnom_image = np.random.randint(0, 256, (100, 100, 3))  # 100x100 image with 3 channels
        ds.images.append(image)

Loading Datasets

You can load the dataset you just created with a single line of code:

import hub

ds = hub.load("hub://<USERNAME>/test-dataset")

You can also access other publicly available hub datasets, not just the ones you created. Here is how you would load the Objectron Bikes Dataset:

import hub

ds = hub.load('hub://activeloop/objectron_bike_train')

To get the first image in the Objectron Bikes dataset in numpy format:

image_arr = ds.image[0].numpy()

Documentation

Getting started guides, examples, tutorials, API reference, and other usage information can be found on our documentation page.

Owner
Activeloop
Activeloop
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022