A set of examples around hub for creating and processing datasets

Related tags

Deep Learningexamples
Overview


Examples for Hub - Dataset Format for AI

A repository showcasing examples of using Hub

Colab Tutorials

Notebook Link
Getting Started with Hub Open In Colab
Creating Object Detection Datasets Open In Colab
Creating Complex Detection Datasets Open In Colab
Data Processing Using Parallel Computing Open In Colab
Training an Image Classification Model in PyTorch Open In Colab

Getting Started with Hub 🚀

Installation

Hub is written in 100% python and can be quickly installed using pip.

pip3 install hub

Creating Datasets

A hub dataset can be created in various locations (Storage providers). This is how the paths for each of them would look like:

Storage provider Example path
Hub cloud hub://user_name/dataset_name
AWS S3 s3://bucket_name/dataset_name
GCP gcp://bucket_name/dataset_name
Local storage path to local directory
In-memory mem://dataset_name

Let's create a dataset in the Hub cloud. Create a new account with Hub from the terminal using activeloop register if you haven't already. You will be asked for a user name, email id and passowrd. The user name you enter here will be used in the dataset path.

$ activeloop register
Enter your details. Your password must be atleast 6 characters long.
Username:
Email:
Password:

Initialize an empty dataset in the hub cloud:

import hub

ds = hub.empty("hub://<USERNAME>/test-dataset")

Next, create a tensor to hold images in the dataset we just initialized:

images = ds.create_tensor("images", htype="image", sample_compression="jpg")

Assuming you have a list of image file paths, lets upload them to the dataset:

image_paths = ...
with ds:
    for image_path in image_paths:
        image = hub.read(image_path)
        ds.images.append(image)

Alternatively, you can also upload numpy arrays. Since the images tensor was created with sample_compression="jpg", the arrays will be compressed with jpeg compression.

import numpy as np

with ds:
    for _ in range(1000):  # 1000 random images
        radnom_image = np.random.randint(0, 256, (100, 100, 3))  # 100x100 image with 3 channels
        ds.images.append(image)

Loading Datasets

You can load the dataset you just created with a single line of code:

import hub

ds = hub.load("hub://<USERNAME>/test-dataset")

You can also access other publicly available hub datasets, not just the ones you created. Here is how you would load the Objectron Bikes Dataset:

import hub

ds = hub.load('hub://activeloop/objectron_bike_train')

To get the first image in the Objectron Bikes dataset in numpy format:

image_arr = ds.image[0].numpy()

Documentation

Getting started guides, examples, tutorials, API reference, and other usage information can be found on our documentation page.

Owner
Activeloop
Activeloop
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022