SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

Overview

SiamMOT

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

SiamMOT: Siamese Multi-Object Tracking,
Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo, Joseph Tighe,

@inproceedings{shuai2021siammot,
  title={SiamMOT: Siamese Multi-Object Tracking},
  author={Shuai, Bing and Berneshawi, Andrew and Li, Xinyu and Modolo, Davide and Tighe, Joseph},
  booktitle={CVPR},
  year={2021}
}

Abstract

In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instance’s movement between two frames such that detected instances are associated. To explore how the motion modelling affects its tracking capability, we present two variants of Siamese tracker, one that implicitly models motion and one that models it explicitly. We carry out extensive quantitative experiments on three different MOT datasets: MOT17, TAO-person and Caltech Roadside Pedestrians, showing the importance of motion modelling for MOT and the ability of SiamMOT to substantially outperform the state-of-the-art. Finally, SiamMOT also outperforms the winners of ACM MM’20 HiEve Grand Challenge on HiEve dataset. Moreover, SiamMOT is efficient, and it runs at 17 FPS for 720P videos on a single modern GPU.

Installation

Please refer to INSTALL.md for installation instructions.

Try SiamMOT demo

For demo purposes, we provide two tracking models -- tracking person (visible part) or jointly tracking person and vehicles (bus, car, truck, motorcycle, etc). The person tracking model is trained on COCO-17 and CrowdHuman, while the latter model is trained on COCO-17 and VOC12. Currently, both models used in demos use EMM as its motion model, which performs best among different alternatives.

In order to run the demo, use the following command:

python3 demos/demo.py --demo-video  PATH_TO_DEMO_VIDE --track-class person --dump-video True

You can choose person or person_vehicel for track-class such that person tracking or person/vehicle tracking model is used accordingly.

The model would be automatically downloaded to demos/models, and the visualization of tracking outputs is automatically saved to demos/demo_vis

We also provide several pre-trained models in model_zoos.md that can be used for demo.

Dataset Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. As a sanity check, the models presented in model_zoos.md can be used to for benchmark testing.

Use the following command to train a model on an 8-GPU machine: Before running training / inference, setup the configuration file properly

python3 -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/dla/DLA_34_FPN.yaml --train-dir PATH_TO_TRAIN_DIR --model-suffix MODEL_SUFFIX 

Use the following command to test a model on a single-GPU machine:

python3 tools/test_net.py --config-file configs/dla/DLA_34_FPN.yaml --output-dir PATH_TO_OUTPUT_DIR --model-file PATH_TO_MODEL_FILE --test-dataset DATASET_KEY --set val

Note: If you get an error ModuleNotFoundError: No module named 'siammot' when running in the git root then make sure your PYTHONPATH includes the current directory, which you can add by running: export PYTHONPATH=.:$PYTHONPATH or you can explicitly add the project to the path by replacing the '.' in the export command with the absolute path to the git root.

Multi-gpu testing is going to be supported later.

Version

This is the preliminary version specifically for Airbone Object Tracking (AOT) workshop. The current version only support the motion model being EMM.

We will add more motion models in the next version, together with more features, stay tuned.

License

This project is licensed under the Apache-2.0 License.

Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022