Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Related tags

Deep LearningTERN
Overview

Transformer Encoder Reasoning Network

Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text Matching and Retrieval", accepted to ICPR 2020 [Pre-print PDF].

This repo is built on top of VSE++.

Setup

  1. Clone the repo and move into it:
git clone https://github.com/mesnico/TERN
cd TERN
  1. Setup python environment using conda:
conda env create --file environment.yml
conda activate tern
export PYTHONPATH=.

Get the data

  1. Download and extract the data folder, containing COCO annotations, the splits by Karpathy et al. and ROUGEL - SPICE precomputed relevances:
wget http://datino.isti.cnr.it/tern/data.tar
tar -xvf data.tar
  1. Download the bottom-up features. We rearranged the ones provided by Anderson et al. in multiple .npy files, one for every image in the COCO dataset. This is beneficial during the dataloading phase. The following command extracts them under data/coco/. If you prefer another location, be sure to adjust the configuration file accordingly.
wget http://datino.isti.cnr.it/tern/features_36.tar
tar -xvf features_36.tar -C data/coco

Evaluate

Download our pre-trained TERN model:

wget http://datino.isti.cnr.it/tern/model_best_ndcg.pth

Then, issue the following commands for evaluating the model on the 1k (5fold cross-validation) or 5k test sets.

python3 test.py model_best_ndcg.pth --config configs/tern.yaml --size 1k
python3 test.py model_best_ndcg.pth --config configs/tern.yaml --size 5k

Train

In order to train the model using the basic TERN configuration, issue the following command:

python3 train.py --config configs/tern.yaml --logger_name runs/tern

runs/tern is where the output files (tensorboard logs, checkpoints) will be stored during this training session.

Reference

If you found this code useful, please cite the following paper:

@article{messina2020transformer,
  title={Transformer Reasoning Network for Image-Text Matching and Retrieval},
  author={Messina, Nicola and Falchi, Fabrizio and Esuli, Andrea and Amato, Giuseppe},
  journal={arXiv preprint arXiv:2004.09144},
  year={2020}
}

License

Apache License 2.0

Owner
Nicola Messina
PhD student at ISTI-CNR, Pisa, Italy. I'm interested in the secrets of intelligence and nature, and I'm passionate about Computer Vision and Deep Learning.
Nicola Messina
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022