Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Overview

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

arXiv

This is the code base for weakly supervised NER.

We provide a three stage framework:

  • Stage I: Domain continual pre-training;
  • Stage II: Noise-aware weakly supervised pre-training;
  • Stage III: Fine-tuning.

In this code base, we actually provide basic building blocks which allow arbitrary combination of different stages. We also provide examples scripts for reproducing our results in BioMedical NER.

See details in arXiv.

Performance Benchmark

BioMedical NER

Method (F1) BC5CDR-chem BC5CDR-disease NCBI-disease
BERT 89.99 79.92 85.87
bioBERT 92.85 84.70 89.13
PubMedBERT 93.33 85.62 87.82
Ours 94.17 90.69 92.28

See more in bio_script/README.md

Dependency

pytorch==1.6.0
transformers==3.3.1
allennlp==1.1.0
flashtool==0.0.10
ray==0.8.7

Install requirements

pip install -r requirements.txt

(If the allennlp and transformers are incompatible, install allennlp first and then update transformers. Since we only use some small functions of allennlp, it should works fine. )

File Structure:

├── bert-ner          #  Python Code for Training NER models
│   └── ...
└── bio_script        #  Shell Scripts for Training BioMedical NER models
    └── ...

Usage

See examples in bio_script

Hyperparameter Explaination

Here we explain hyperparameters used the scripts in ./bio_script.

Training Scripts:

Scripts

  • roberta_mlm_pretrain.sh
  • weak_weighted_selftrain.sh
  • finetune.sh

Hyperparameter

  • GPUID: Choose the GPU for training. It can also be specified by xxx.sh 0,1,2,3.
  • MASTER_PORT: automatically constructed (avoid conflicts) for distributed training.
  • DISTRIBUTE_GPU: use distributed training or not
  • PROJECT_ROOT: automatically detected, the root path of the project folder.
  • DATA_DIR: Directory of the training data, where it contains train.txt test.txt dev.txt labels.txt weak_train.txt (weak data) aug_train.txt (optional).
  • USE_DA: if augment training data by augmentation, i.e., combine train.txt + aug_train.txt in DATA_DIR for training.
  • BERT_MODEL: the model backbone, e.g., roberta-large. See transformers for details.
  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • LOSSFUNC: nll the normal loss function, corrected_nll noise-aware risk (i.e., add weighted log-unlikelihood regularization: wei*nll + (1-wei)*null ).
  • MAX_WEIGHT: The maximum weight of a sample in the loss.
  • MAX_LENGTH: max sentence length.
  • BATCH_SIZE: batch size per GPU.
  • NUM_EPOCHS: number of training epoches.
  • LR: learning rate.
  • WARMUP: learning rate warmup steps.
  • SAVE_STEPS: the frequency of saving models.
  • EVAL_STEPS: the frequency of testing on validation.
  • SEED: radnom seed.
  • OUTPUT_DIR: the directory for saving model and code. Some parameters will be automatically appended to the path.
    • roberta_mlm_pretrain.sh: It's better to manually check where you want to save the model.]
    • finetune.sh: It will be save in ${BERT_MODEL_PATH}/finetune_xxxx.
    • weak_weighted_selftrain.sh: It will be save in ${BERT_MODEL_PATH}/selftrain/${FBA_RULE}_xxxx (see FBA_RULE below)

There are some addition parameters need to be set for weakly supervised learning (weak_weighted_selftrain.sh).

Profiling Script

Scripts

  • profile.sh

Profiling scripts also use the same entry as the training script: bert-ner/run_ner.py but only do evaluation.

Hyperparameter Basically the same as training script.

  • PROFILE_FILE: can be train,dev,test or a specific path to a txt data. E.g., using Weak by

    PROFILE_FILE=weak_train_100.txt PROFILE_FILE=$DATA_DIR/$PROFILE_FILE

  • OUTPUT_DIR: It will be saved in OUTPUT_DIR=${BERT_MODEL_PATH}/predict/profile

Weakly Supervised Data Refinement Script

Scripts

  • profile2refinedweakdata.sh

Hyperparameter

  • BERT_CKP: see BERT_MODEL_PATH.
  • BERT_MODEL_PATH: the path of the model checkpoint that you want to load as the initialization. Usually used with BERT_CKP.
  • WEI_RULE: rule for generating weight for each weak sample.
    • uni: all are 1
    • avgaccu: confidence estimate for new labels generated by all_overwrite
    • avgaccu_weak_non_O_promote: confidence estimate for new labels generated by non_O_overwrite
  • PRED_RULE: rule for generating new weak labels.
    • non_O_overwrite: non-entity ('O') is overwrited by prediction
    • all_overwrite: all use prediction, i.e., self-training
    • no: use original weak labels
    • non_O_overwrite_all_overwrite_over_accu_xx: non_O_overwrite + if confidence is higher than xx all tokens use prediction as new labels

The generated data will be saved in ${BERT_MODEL_PATH}/predict/weak_${PRED_RULE}-WEI_${WEI_RULE} WEAK_RULE specified in weak_weighted_selftrain.sh is essential the name of folder weak_${PRED_RULE}-WEI_${WEI_RULE}.

More Rounds of Training, Try Different Combination

  1. To do training with weakly supervised data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Create profile data, e.g., run ./bio_script/profile.sh for dev set and weak set
  • iii) Generate data with weak labels from profile data, e.g., run ./bio_script/profile2refinedweakdata.sh. You can use different rules to generate weights for each sample (WEI_RULE) and different rules to refine weak labels (PRED_RULE). See more details in ./ber-ner/profile2refinedweakdata.py
  • iv) Do training with ./bio_script/weak_weighted_selftrain.sh.
  1. To do fine-tuning with human labeled data from any model checkpoint directory:
  • i) Set BERT_CKP appropriately;
  • ii) Run ./bio_script/finetune.sh.

Reference

@inproceedings{Jiang2021NamedER,
  title={Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data},
  author={Haoming Jiang and Danqing Zhang and Tianyue Cao and Bing Yin and T. Zhao},
  booktitle={ACL/IJCNLP},
  year={2021}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

Owner
Amazon
Amazon
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022