CVPR 2021 Challenge on Super-Resolution Space

Overview

Learning the Super-Resolution Space Challenge
NTIRE 2021 at CVPR

Learning the Super-Resolution Space challenge is held as a part of the 6th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop in conjunction with CVPR 2021. The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible super-resolutions.

How to participate?

To participate in this challenge, please sign up using the following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Tackling the ill-posed nature of Super-Resolution

CVPR 2021 Challenge

Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images. Infinitely many high-resolution images can be downsampled to the same low-resolution image. That means that the problem is ill-posed and cannot be inverted with a deterministic mapping. Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible high-resolution images given a low-resolution image. This problem has been addressed in recent works [1, 2, 3]. The one-to-many stochastic formulation of the SR problem allows for a few potential advantages:

  • The development of more robust learning formulations that better accounts for the ill-posed nature of the SR problem.
  • Multiple predictions can be sampled and compared.
  • It opens the potential for controllable exploration and editing in the space of SR predictions.
Super-Resolution with Normalizing Flow Explorable SR Screenshot 2021-01-12 at 16 05 43
[Paper] [Project] [Paper] [Project] [Paper] [Project]
[1] SRFlow: Learning the Super-Resolution Space with Normalizing Flow. Lugmayr et al., ECCV 2020. [2] Explorable Super-Resolution. Bahat & Michaeli, CVPR 2020. [3] DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution. Bühler et al., ACCV 2020.

CVPR 2021 Challenge on Learning the Super-Resolution Space

We organize this challenge to stimulate research in the emerging area of learning one-to-many SR mappings that are capable of sampling from the space of plausible solutions. Therefore the task is to develop a super-resolution method that:

  1. Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans.
  2. Is capable of sampling an arbitrary number of SR images capturing meaningful diversity, corresponding to the uncertainty induced by the ill-posed nature of the SR problem together with image priors.
  3. Each individual SR prediction should be consistent with the input low-resolution image.

The challenge contains two tracks, targeting 4X and 8X super-resolution respectively. You can download the training and validation data in the table below. At a later stage, the low-resolution of the test set will be released.

  Training Validation
  Low-Resolution High-Resolution Low-Resolution High-Resolution
Track 4X 4X LR Train 4X HR Train 4X LR Valid 4X HR Valid
Track 8X 8X LR Train 8X HR Train 8X LR Valid 8X HR Valid

Challenge Rules

To guide the research towards useful and generalizable techniques, submissions need to adhere to the following rules. All participants must submit code of their solution along with the final results.

  • The method must be able to generate an arbitrary number of diverse samples. That is, your method cannot be limited to a maximum number of different SR samples (corresponding to e.g. a certain number of different output network heads).
  • All SR samples must be generated by a single model. That is, no ensembles are allowed.
  • No self-ensembles during inference (e.g. flipping and rotation).
  • All SR samples must be generated using the same hyper-parameters. That is, the generated SR samples shall not be the result of different choices of hyper-parameters during inference.
  • We accept submissions of deterministic methods. However, they will naturally score zero in the diversity measure and therefore not be able to win the challenge.
  • Other than the validation and test split of the DIV2k dataset, any training data or pre-training is allowed. You are not allowed to use DIV2K validation or test sets (low- and high-resolution images) for training.

Evaluation Protocol

A method is evaluated by first predicting a set of 10 randomly sampled SR images for each low-resolution image in the dataset. From this set of images, evaluation metrics corresponding to the three criteria above will be considered. The participating methods will be ranked according to each metric. These ranks will then be combined into a final score. The three evaluation metrics are described next.

git clone --recursive https://github.com/andreas128/NTIRE21_Learning_SR_Space.git
python3 measure.py OutName path/to/Ground-Truch path/to/Super-Resolution n_samples scale_factor

# n_samples = 10
# scale_factor = 4 for 4X and 8 for 8X

How we measure Photo-realism?

To assess the photo-realism, a human study will be performed on the test set for the final submission.

Automatically assessing the photo-realism and image quality is an extremely difficult task. All existing methods have severe shortcomings. As a very rough guide, you can use the LPIPS distance. Note: LPIPS will not be used to score photo-realism of you final submission. So beware of overfitting to LPIPS, as that can lead to worse results. LPIPS is integrated in our provided toolkit in measure.py.

How we measure the spanning of the SR Space?

The samples of the developed method should provide a meaningful diversity. To measure that, we define the following score. We sample 10 images, densely calculate a metric between the samples and the ground truth. To obtain the local best we pixel-wise select the best score out of the 10 samples and take the full image's average. The global best is obtained by averaging the whole image's score and selecting the best. Finally, we calculate the score using the following formula:

score = (global best - local best)/(global best) * 100

ESRGAN SRFlow
Track 4X 0 25.36
Track 8X 0 10.62

How we measure the Low Resolution Consistency

To measure how much information is preserved in the super-resloved image from the low-resolution image, we measure the LR-PSNR. The goal in this challenge is to obtain a LR-PSNR of 45dB. All approaches that have an average PSNR above this value will be ranked equally in terms of this criteria.

ESRGAN SRFlow
Track 4X 39.01 49.91
Track 8X 31.28 50.0

Important Dates

Date Event
2021.03.01 Final test data release (inputs only)
2021.03.08 test result submission deadline
2021.03.09 fact sheet / code / model submission deadline
2021.03.11 test preliminary score release to the participants
2021.03.28 challenge paper submission deadline
2021.04.13 camera-ready deadline
2021.06.15 workshop day

Submission of Final Test Results

After the final testing phase, participants will be asked to submit:

  • SR predictions on the test set.
  • Code.
  • A fact sheet describing their method.

Details will follow when the test phase starts ...

Issues and questions

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

CVPR 2021 NTIRE Terms and conditions

The terms and conditions for participating in the challenge are provided here

How to participate?

To participate in this challenge, please sign up using following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Owner
andreas
andreas
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022