imbalanced-DL: Deep Imbalanced Learning in Python

Overview

imbalanced-DL: Deep Imbalanced Learning in Python

Overview

imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanced learning easier for researchers and real-world users. From our experiences, we observe that to tackcle deep imbalanced learning, there is a need for a strategy. That is, we may not just address this problem with one single model or approach. Thus in this package, we seek to provide several strategies for deep imbalanced learning. The package not only implements several popular deep imbalanced learning strategies, but also provides benchmark results on several image classification tasks. Futhermore, this package provides an interface for implementing more datasets and strategies.

Strategy

We provide some baseline strategies as well as some state-of-the-are strategies in this package as the following:

Environments

  • This package is tested on Linux OS.
  • You are suggested to use a different virtual environment so as to avoid package dependency issue.
  • For Pyenv & Virtualenv users, you can follow the below steps to create a new virtual environment or you can also skip this step.
Pyenv & Virtualenv (Optinal)
  • For dependency isolation, it's better to create another virtual environment for usage.
  • The following will be the demo for creating and managing virtual environment.
  • Install pyenv & virtualenv first.
  • pyenv virtualenv [version] [virtualenv_name]
    • For example, if you'd like to use python 3.6.8, you can do: pyenv virtualenv 3.6.8 TestEnv
  • mkdir [dir_name]
  • cd [dir_name]
  • pyenv local [virtualenv_name]
  • Then, you will have a new (clean) python virtual environment for the package installation.

Installation

Basic Requirement

  • Python >= 3.6
git clone https://github.com/ntucllab/imbalanced-DL.git
cd imbalanceddl
python -m pip install -r requirements.txt
python setup.py install

Usage

We highlight three key features of imbalanced-DL as the following:

(0) Imbalanced Dataset:

  • We support 5 benchmark image datasets for deep imbalanced learing.
  • To create and ImbalancedDataset object, you will need to provide a config_file as well as the dataset name you would like to use.
  • Specifically, inside the config_file, you will need to specify three key parameters for creating imbalanced dataset.
    • imb_type: you can choose from exp (long-tailed imbalance) or step imbalanced type.
    • imb_ratio: you can specify the imbalanceness of your data, typically researchers choose 0.1 or 0.01.
    • dataset_name: you can specify 5 benchmark image datasets we provide, or you can implement your own dataset.
    • For an example of the config_file, you can see example/config.
  • To contruct your own dataset, you should inherit from BaseDataset, and you can follow torchvision.datasets.ImageFolder to construct your dataset in PyTorch format.
from imbalanceddl.dataset.imbalance_dataset import ImbalancedDataset

# specify the dataset name
imbalance_dataset = ImbalancedDataset(config, dataset_name=config.dataset)

(1) Strategy Trainer:

  • We support 6 different strategies for deep imbalance learning, and you can either choose to train from scratch, or evaluate with the best model after training. To evaluate with the best model, you can get more in-depth metrics such as per class accuracy for further evaluation on the performance of the selected strategy. We provide one trained model in example/checkpoint_cifar10.
  • For each strategy trainer, it is associated with a config_file, ImbalancedDataset object, model, and strategy_name.
  • Specifically, the config_file will provide some training parameters, where the default settings for reproducing benchmark result can be found in example/config. You can also set these training parameters based on your own need.
  • For model, we currently provide resnet32 and resnet18 for reproducing the benchmark results.
  • We provide a build_trainer() function to return the specified trainer as the following.
from imbalanceddl.strategy.build_trainer import build_trainer

# specify the strategy
trainer = build_trainer(config,
                        imbalance_dataset,
                        model=model,
                        strategy=config.strategy)
# train from scratch
trainer.do_train_val()

# Evaluate with best model
trainer.eval_best_model()
  • Or you can also just select the specific strategy you would like to use as:
from imbalanceddl.strategy import LDAMDRWTrainer

# pick the trainer
trainer = LDAMDRWTrainer(config,
                         imbalance_dataset,
                         model=model,
                         strategy=config.strategy)

# train from scratch
trainer.do_train_val()

# Evaluate with best model
trainer.eval_best_model()
  • To construct your own strategy trainer, you need to inherit from Trainer class, where in your own strategy you will have to implement get_criterion() and train_one_epoch() method. After this you can choose whether to add your strategy to build_trainer() function or you can just use it as the above demonstration.

(2) Benchmark research environment:

  • To conduct deep imbalanced learning research, we provide example codes for training with different strategies, and provide benchmark results on five image datasets. To quickly start training CIFAR-10 with ERM strategy, you can do:
cd example
python main.py --gpu 0 --seed 1126 --c config/config_cifar10.yaml --strategy ERM

  • Following the example code, you can not only get results from baseline training as well as state-of-the-art performance such as LDAM or Remix, but also use this environment to develop your own algorithm / strategy. Feel free to add your own strategy into this package.
  • For more information about example and usage, please see the Example README

Benchmark Results

We provide benchmark results on 5 image datasets, including CIFAR-10, CIFAR-100, CINIC-10, SVHN, and Tiny-ImageNet. We follow standard procedure to generate imbalanced training dataset for these 5 datasets, and provide their top 1 validation accuracy results for research benchmark. For example, below you can see the result table of Long-tailed Imbalanced CIFAR-10 trained on different strategies. For more detailed benchmark results, please see example/README.md.

  • Long-tailed Imbalanced CIFAR-10
imb_type imb_factor Model Strategy Validation Top 1
long-tailed 100 ResNet32 ERM 71.23
long-tailed 100 ResNet32 DRW 75.08
long-tailed 100 ResNet32 LDAM-DRW 77.75
long-tailed 100 ResNet32 Mixup-DRW 82.11
long-tailed 100 ResNet32 Remix-DRW 81.82

Test

  • python -m unittest -v

Contact

If you have any question, please don't hesitate to email [email protected]. Thanks !

Acknowledgement

The authors thank members of the Computational Learning Lab at National Taiwan University for valuable discussions and various contributions to making this package better.

Owner
NTUCSIE CLLab
Computational Learning Lab, Dept. of Computer Science and Information Engineering, National Taiwan University
NTUCSIE CLLab
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022