Framework for training options with different attention mechanism and using them to solve downstream tasks.

Overview

Using Attention in HRL

Framework for training options with different attention mechanism and using them to solve downstream tasks.

Requirements

GPU required

conda env create -f conda_env.yml

After the instalation ends you can activate your environment and install remaining dependencies. (e.g. sub-module gym_minigrid which is a modified version of MiniGrid )

conda activate affenv
cd gym-minigrid
pip install -e .
cd ../
pip install -e .

Instructions

In order to train options and IC_net follow these steps:

1. Configure desired environment - number of task and objects per task in file config/op_ic_net.yaml. E.g:
  env_args:
    task_size: 3
    num_tasks: 4

2. Configure desired type of attention (between "affordance", "interest", "nan") - in file config/op_ic_net.yaml. E.g. 
main:
  attention: "affordance" 

3. Train by running command
liftoff train_main.py configs/op_ic_net.yaml

Once a pre-trained option checkpoint exists a HRL agent can be trained to solve the downstream task (for the same environment the options were trained on). Follow these steps in order to train an HRL-Agent with different types of attentions:

1. Configure checkpoint (experiment config file and options_model_id) for pre-trained Options and IC_net - in file configs/hrl-agent.yaml. E.g: 

main:
  options_model_cfg: "results/op_aff_4x3/0000_multiobj/0/cfg.yaml"
  options_model_id: -1  # Last checkpoint will be used

2. Configure type of attention for training the HRL-agent (between "affordance", "interest", "nan") - in file configs/hrl-agent.yaml. E.g:
main:
  modulate_policy: affordance

3. Train HRL-agent by running command
liftoff train_mtop_ppo.py configs/hrl-agent.yaml

Both training scrips produce results in the results folder, where all the outputs are going to be stored including train/eval logs, checkpoints. Live plotting is integrated using services from Wandb (plotting has to be enabled in the config file main:plot and user logged in Wandb or user login api key in the file .wandb_key).

The console output is also available in a form:

  • Option Pre-training e.g.:
U 11 | F 022528 | FPS 0024 | D 402 | rR:u, 0.03 | F:u, 41.77 | tL:u 0.00 | tPL:u 6.47 | tNL:u 0.00 | t 52 | aff_loss 0.0570 | aff 2.8628 | NOaff 0.0159 | ic 0.0312 | cnt_ic 1.0000 | oe 2.4464 | oic0 0.0000 | oic1 0.0000 | oic2 0.0000 | oic3 0.0000 | oPic0 0.0000 | oPic1 0.0000 | oPic2 0.0000 | oPic3 0.0000 | icB 0.0208 | PicB 0.1429 | icND 0.0192

Some of the training entries decodes as

F - number of frames (steps in the env)
tL - termination loss
aff_loss - IC_net loss
cnt_ic - Intent completion per training batch 
oicN - Intent completion fraction for each option N out of Total option N sampled
oPicN - Intent completion fraction for each option N out of affordable ones
PicB - Intent completion average over all options out of affordable ones
  • HRL-agent training
U 1 | F 4555192.0 | FPS 21767 | D 209 | rR:u, 0.00 | F:u, 8.11 | e:u, 2.48 | v:u 0.00 | pL:u 0.01 | vL:u 0.00 | g:u 0.01 | TrR:u, 0.00

Some of the training entries decodes as

F - number of frames (steps in the env offseted by the number of pre-training steps)
rR - Accumulated episode reward average
TrR - Average episode success rate

Framework structure

The code is organised as follows:

  • agents/ - implementation of agents (e.g. training options and IC_net multistep_affordance.py; hrl-agent PPO ppo_smdp.py )
  • configs/ - config files for training agents
  • gym-minigrid/ - sub-module - Minigrid envs
  • models/ - Neural network modules (e.g options with IC_net aff_multistep.py and CNN backbone extractor_cnn_v2.py)
  • utils/ - Scripts for e.g.: running envs in parallel, preprocessing observations, gym wrappers, data structures, logging modules
  • train_main.py - Train Options with IC_net
  • train_mtop_ppo.py - Train HRL-agent

Acknowledgements

We used PyTorch as a machine learning framework.

We used liftoff for experiment management.

We used wandb for plotting.

We used PPO adapted for training our agents.

We used MiniGrid to create our environment.

paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022