3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

Overview

3rd Place Solution of Traffic4Cast 2021 Core Challenge

This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge.

Paper

Our solution is described in the "Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation" paper.

If you wish to cite this code, please do it as follows:

@misc{konyakhin2021solving,
      title={Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation}, 
      author={Vsevolod Konyakhin and Nina Lukashina and Aleksei Shpilman},
      year={2021},
      eprint={2111.03421},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Competition and Demonstration Track @ NeurIPS 2021

Learnt parameters

The models' learnt parameters are available by the link: https://drive.google.com/file/d/1zD0CecX4P3v5ugxaHO2CQW9oX7_D4BCa/view?usp=sharing
Please download the archive and unzip it into the weights folder of the repository, so its structure looks like the following:

├── ...
├── traffic4cast
├── weights
│   ├── densenet                 
│   │   ├── BERLIN_1008_1430_densenet_unet_mse_best_val_loss_2019=78.4303.pth                     
│   │   ├── CHICAGO_1010_1730_densenet_unet_mse_best_val_loss_2019=41.1579.pth
│   │   └── MELBOURNE_1009_1619_densenet_unet_mse_best_val_loss_2019=25.7395.pth    
│   ├── effnetb5
│   │   ├── BERLIN_1008_1430_efficientnetb5_unet_mse_best_val_loss_2019=80.3510.pth    
│   │   ├── CHICAGO_1012_1035_efficientnetb5_unet_mse_best_val_loss_2019=41.6425.pth
│   │   ├── ISTANBUL_1012_2315_efficientnetb5_unet_mse_best_val_loss_2019=55.7918.pth    
│   │   └── MELBOURNE_1010_0058_efficientnetb5_unet_mse_best_val_loss_2019=26.0132.pth    
│   └── unet
│       ├── BERLIN_0806_1425_vanilla_unet_mse_best_val_loss_2019=0.0000_v5.pth    
│       ├── CHICAGO_0805_0038_vanilla_unet_mse_best_val_loss_2019=42.6634.pth
│       ├── ISTANBUL_0805_2317_vanilla_unet_mse_best_val_loss_2019=0.0000_v4.pth
│       └── MELBOURNE_0804_1942_vanilla_unet_mse_best_val_loss_2019=26.7588.pth
├── ...

Submission reproduction

To generate the submission file, please run the following script:

# $1 - absolute path to the dataset, $2 device to run inference
sh submission.sh {absolute path to dataset} {cpu, cuda}
# Launch example
sh submission.sh /root/data/traffic4cast cuda

The above sctipt generates the submission file submission/submission_all_unets_da_none_mpcpm1_mean_temporal_{date}.zip, which gave us the best MSE of 49.379068541527 on the final leaderboard.

Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Nicholas Lee 3 Jan 09, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022