Find graph motifs using intuitive notation

Overview

d o t m o t i f

Find graph motifs using intuitive notation

PyPI Codecov


DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like this:

# Look for all motifs of the form,

# Neuron A excites B:
A -> B [type = "excitatory"]
# ...and B inhibits C:
B -> C [type = "inhibitory"]

Or like this:

TwitterInfluencer(person) {
    # An influencer has more than a million
    # followers and is verified.
    person.followers > 1000000
    person.verified = true
}

InfluencerAwkward(person1, person2) {
    # Two people who are both influencers...
    TwitterInfluencer(person1)
    TwitterInfluencer(person2)
    # ...where one follows the other, but...
    person1 -> person2
    # ...the other doesn't follow back
    person2 !> person1
}

# Search for all awkward twitter influencer
# relationships in the dataset:
InfluencerAwkward(X, Y)

Get Started

To follow along in an interactive Binder without installing anything, launch a Jupyter Notebook here:

Binder

If you have DotMotif, a NetworkX graph, and a curious mind, you already have everything you need to start using DotMotif:

from dotmotif import Motif, GrandIsoExecutor

executor = GrandIsoExecutor(graph=my_networkx_graph)

triangle = Motif("""
A -> B
B -> C
C -> A
""")

results = executor.find(triangle)

Parameters

You can also pass optional parameters into the constructor for the dotmotif object. Those arguments are:

Argument Type, Default Behavior
ignore_direction bool: False Whether to disregard direction when generating the database query
limit int: None A limit (if any) to impose on the query results
enforce_inequality bool: False Whether to enforce inequality; in other words, whether two nodes should be permitted to be aliases for the same node. For example, in A->B->C; if A!=C, then set to True
exclude_automorphisms bool: False Whether to return only a single example for each detected automorphism. See more in the documentation

For more details on how to write a query, see Getting Started.


Citing

If this tool is helpful to your research, please consider citing it with:

# https://doi.org/10.1038/s41598-021-91025-5
@article{Matelsky_Motifs_2021, 
    title={{DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries}},
    volume={11}, 
    ISSN={2045-2322}, 
    url={http://dx.doi.org/10.1038/s41598-021-91025-5}, 
    DOI={10.1038/s41598-021-91025-5}, 
    number={1}, 
    journal={Scientific Reports}, 
    publisher={Springer Science and Business Media LLC}, 
    author={Matelsky, Jordan K. and Reilly, Elizabeth P. and Johnson, Erik C. and Stiso, Jennifer and Bassett, Danielle S. and Wester, Brock A. and Gray-Roncal, William},
    year={2021}, 
    month={Jun}
}
Comments
  • Neuprint Executor - Labeling Edges by ROI

    Neuprint Executor - Labeling Edges by ROI

    Hi Jordan,

    Do you see an easy way to assign ROI labels to edges in the neuprint executor? Let's say I want to query something like this:

    A -> B [weight > 20, ROI == "CX"]
    A -> B [weight > 30, ROI == "CRE(L)"] 
    

    So basically, there are two things here—multigraphs, which you address already in the docs, and encoding edge ROIs. I wonder if that's rather a hard thing to do or not. The data should be there as neuprint-python fetch_synapse_connections returns something like this

        bodyId_pre  bodyId_post roi_pre roi_post  x_pre  y_pre  z_pre  x_post  y_post  z_post  confidence_pre  confidence_post
    0    792368888    754547386  PED(R)   PED(R)  14013  27747  19307   13992   27720   19313           0.996         0.401035
    1    792368888    612742248  PED(R)   PED(R)  14049  27681  19417   14044   27662   19408           0.921         0.881487
    2    792368888   5901225361  PED(R)   PED(R)  14049  27681  19417   14055   27653   19420
    ...
    

    According to this issue it looks like it's possible. My observation is that the physical location of a connection between two neurons is an important feature of a motif. Looking forward to hearing what you say.

    EDIT: Maybe an indirect way to support multiple edges between two nodes is by grouping edge attributes. Does something like this seem plausible. You are doing smth similar in the multigraph docs already: A -> B [synapse_count > 2]. But what exactly is synapse_count?

    A -> B [[weight >= 20, ROI == "CX"], [weight > 30, ROI == "CRE(L)"]]
    

    Best, Jakob

    enhancement cypher Neo4jExecutor NeuPrintExecutor 
    opened by jakobtroidl 9
  • Error on first query

    Error on first query

    Tried to run the query from the tutorial:

    motif = Motif("""
    # My Awesome Motif
    
    Nose_Cell -> Brain_Cell
    Brain_Cell -> Arm_Cell
    """)
    

    But got this error:

    FileNotFoundError                         Traceback (most recent call last)
    <ipython-input-1-3a88159c0a0c> in <module>
    ----> 1 import dotmotif
          2 import networkx
          3 
          4 motif = Motif("""
          5 # My Awesome Motif
    
    ~\anaconda3\lib\site-packages\dotmotif\__init__.py in <module>
         24 from networkx.algorithms import isomorphism
         25 
    ---> 26 from .parsers.v2 import ParserV2
         27 from .validators import DisagreeingEdgesValidator
         28 
    
    ~\anaconda3\lib\site-packages\dotmotif\parsers\v2\__init__.py in <module>
         11 
         12 
    ---> 13 dm_parser = Lark(open(os.path.join(os.path.dirname(__file__), "grammar.lark"), "r"))
         14 
         15 
    
    FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\xxxx\\anaconda3\\lib\\site-packages\\dotmotif\\parsers\\v2\\grammar.lark'
    
    bug parser install 
    opened by lix2k3 9
  • Filtering By Properties w/ Invalid Characters in the Name

    Filtering By Properties w/ Invalid Characters in the Name

    Hey There, I'm using dotmotif to query the neuPrint dataset and have found some of the neurons have properties that aren't accepted in the query string format e.g. 'AVLP(R)': True,

    Is there a way to still query w/ these params? I tried adding directly to the _node_constraints but that doesn't seem to work either e.g.

    motif._node_constraints['A']['AVLP(R)'] = {}
    motif._node_constraints['A']['AVLP(R)']['='] = [True]
    
    Variable `R` not defined (line 2, column 83 (offset: 156))
    "    WHERE B.status = "Traced" AND A.status = "Orphan" AND A.INP = True AND A.AVLP(R) = True"
    
    parser cypher 
    opened by simonwarchol 7
  • fix: weight edge attribute doesn't throw errors anymore (#127)

    fix: weight edge attribute doesn't throw errors anymore (#127)

    The edge attribute in the neuprint executor threw an error with the new JSON feature implementation. I also made the neuprint executor tests more rigorous.

    opened by jakobtroidl 3
  • Upgrade grandiso version to use limits and iterable

    Upgrade grandiso version to use limits and iterable

    In grandiso v1.1.0 and above, there is an optional limit argument to the find_motifs call which short-circuits motif counting if a certain number of valid mappings are found.

    Right now, NetworkX and GrandIso executors implement the dotmotif limit parameter by finding all motifs and then downselecting, which is super inefficient and lame. We could pretty substantially improve performance by supporting the GrandIso limit arg.

    A notable challenge: We perform an additional downselect after running grandiso (to double-check attribute filters). So we may need to store a list of mappings temporarily in order to backfill the results list if candidate mappings are filtered out.

    enhancement GrandIsoExecutor 
    opened by j6k4m8 2
  • Non-string ids not supported by Neo4jExecutor

    Non-string ids not supported by Neo4jExecutor

    Ingesting a NetworkX graph with integer ids results in an error: ValueError: Could not export graph: unsupported operand type(s) for +: 'int' and 'str'. It should be straightforward to handle integers, though A node can be any hashable Python object except None. Maybe just cast with repr.

    question Neo4jExecutor 
    opened by jtpdowns 2
  • Support n constraints on each edge value-operator pair

    Support n constraints on each edge value-operator pair

    Currently, the parser overwrites previous operators if it's redefined:

    A -> B [value<=5, value<=2]
    

    ...will yield a constraint operator of

    { "value": { "lte": 2.0 } }
    

    (i.e. overwriting the first rule).

    bug parser 
    opened by j6k4m8 2
  • Node- and edge-attribute support in DSL

    Node- and edge-attribute support in DSL

    Proposed syntax concepts:

    Nodes

    Inline maplike:

    Node1 { type="GABA", z<12 } -> Node2
    

    Pros:

    • Succinct

    Cons:

    • Possible duplication or conflicting attributes if map is included on multiple lines for the same node

    Postfix where-like:

    Node1 -> Node2 | Node1.type = "GABA", Node1.z < 12
    

    Pros:

    • Succinct

    Cons:

    • Possible duplication or conflicting attributes if attrs are included on multiple lines for the same node

    Footnote constraints

    Node1 -> Node2
    
    Node1.type = "GABA"
    Node1.z < 12
    

    Pros:

    • Reduces possibility of conflicting constraints
    • Clear syntax; can be standalone in its own macro

    Cons:

    • Linecount verbose
    • Decouples attributes from connectivity clauses

    Edges

    Inline maplike:

    A ->{type: "excitatory", neurotransmitter: "ACh"} B
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language

    Postfix where-like:

    A -> B | [type: "excitatory", neurotransmitter: "ACh"]
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language

    Infix maplike:

    A -[type: "excitatory", neurotransmitter: "ACh"]> B
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language
    enhancement DSL 
    opened by j6k4m8 2
  • Add macro edge aliases

    Add macro edge aliases

    This adds support for complex edge constraints in macros:

    decreasing_edge_weights(a, b, c) {
        a -> b as ab
        b -> c as bc
        ab.weight > bc.weight
    }
    
    ...
    

    In increasing levels of challengingness:

    • [x] Add support for simple (edge-value) edge constraints in macros
    • [x] Add support for dynamic (edge-edge) edge constraints in macros
    • [x] Extend support for recursive calls to macros with simple constraints
    • [x] Extend support for recursive calls to macros with dynamic constraints
    • [x] Update documentation

    This fixes #110 and finishes work started in #119.

    enhancement DSL parser 
    opened by j6k4m8 1
  • Add edge aliasing and edge constraints

    Add edge aliasing and edge constraints

    This PR adds support for edge aliases (first described in #110) and comparisons between edge attributes with values and with other edges.

    This enables syntax like this:

    A -> B as ab
    B -> A as ba
    
    ab.weight > ba.weight
    
    • [x] Add support in the DSL
    • [x] Add support in the parser + transformer
    • [x] Add support in the executors:
      • [x] GrandIso
      • [x] NetworkX
      • [x] NeuPrint
      • [x] Neo4j

    I am going to push macro support in a separate PR, since this one is getting pretty lengthy already!

    enhancement DSL parser cypher Neo4jExecutor NetworkXExecutor NeuPrintExecutor GrandIsoExecutor 
    opened by j6k4m8 1
  • Add node attribute bracket syntax

    Add node attribute bracket syntax

    Adds support for "bracket" syntax for node attributes. An attribute like XYZ(ABC) or ABC DEF used to be disallowed because of illegal characters in the attribute name, particularly when using the "dot-attribute" notation:

    # broken:
    A -> B
    A.ABC DEF > 10
    

    The new syntax uses bracket-attribute notation to "escape" these names:

    # working:
    import dotmotif
    from dotmotif.executors.NeuPrintExecutor import NeuPrintExecutor
    
    HOSTNAME = "neuprint.janelia.org"
    DATASET = "hemibrain:v1.2.1"
    TOKEN = "[YOUR TOKEN HERE]"
    
    motif = dotmotif.Motif("""
    A -> B
    A['AVLP(R)'] = True
    """)
    
    E = NeuPrintExecutor(HOSTNAME, DATASET, TOKEN)
    
    E.find(motif, limit=2)
    

    Fixes #111.

    parser cypher Neo4jExecutor NeuPrintExecutor 
    opened by j6k4m8 1
  • Add Impossible Constraints validator

    Add Impossible Constraints validator

    We should be able to automatically catch things like this:

    A.type = 4
    A.type != 4
    

    Right now, we'll catch them in certain instances, but not when constraints are inherited from automorphisms (see #118). Getting smarter about this will likely improve runtime considerably.

    enhancement validator 
    opened by j6k4m8 0
  • Anonymous motif participants

    Anonymous motif participants

    Anonymous motif participants:

    A -> _hidden
    _hidden -> B
    

    Anonymous node participants in macros:

    two_hop(A, B) {
        A -> _i
        _i -> B
    }
    
    two_hop(neuron1, neuron2)
    
    
    
    enhancement DSL parser 
    opened by j6k4m8 0
Releases(v0.13.0)
A Python Object-Document-Mapper for working with MongoDB

MongoEngine Info: MongoEngine is an ORM-like layer on top of PyMongo. Repository: https://github.com/MongoEngine/mongoengine Author: Harry Marr (http:

MongoEngine 3.9k Jan 08, 2023
aioodbc - is a library for accessing a ODBC databases from the asyncio

aioodbc aioodbc is a Python 3.5+ module that makes it possible to access ODBC databases with asyncio. It relies on the awesome pyodbc library and pres

aio-libs 253 Dec 31, 2022
A library for python made by me,to make the use of MySQL easier and more pythonic

my_ezql A library for python made by me,to make the use of MySQL easier and more pythonic This library was made by Tony Hasson , a 25 year old student

3 Nov 19, 2021
A wrapper for SQLite and MySQL, Most of the queries wrapped into commands for ease.

Before you proceed, make sure you know Some real SQL, before looking at the code, otherwise you probably won't understand anything. Installation pip i

Refined 4 Jul 30, 2022
Pure-python PostgreSQL driver

pg-purepy pg-purepy is a pure-Python PostgreSQL wrapper based on the anyio library. A lot of this library was inspired by the pg8000 library. Credits

Lura Skye 11 May 23, 2022
Simple DDL Parser to parse SQL (HQL, TSQL, AWS Redshift, Snowflake and other dialects) ddl files to json/python dict with full information about columns: types, defaults, primary keys, etc.

Simple DDL Parser Build with ply (lex & yacc in python). A lot of samples in 'tests/. Is it Stable? Yes, library already has about 5000+ usage per day

Iuliia Volkova 95 Jan 05, 2023
Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL.

cnpj-mysql Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL. Dados públicos de cnpj no site da Receit

17 Dec 25, 2022
sync/async MongoDB ODM, yes.

μMongo: sync/async ODM μMongo is a Python MongoDB ODM. It inception comes from two needs: the lack of async ODM and the difficulty to do document (un)

Scille 428 Dec 29, 2022
Prometheus instrumentation library for Python applications

Prometheus Python Client The official Python 2 and 3 client for Prometheus. Three Step Demo One: Install the client: pip install prometheus-client Tw

Prometheus 3.2k Jan 07, 2023
A Python-based RPC-like toolkit for interfacing with QuestDB.

pykit A Python-based RPC-like toolkit for interfacing with QuestDB. Requirements Python 3.9 Java Azul

QuestDB 11 Aug 03, 2022
A wrapper around asyncpg for use with sqlalchemy

asyncpgsa A python library wrapper around asyncpg for use with sqlalchemy Backwards incompatibility notice Since this library is still in pre 1.0 worl

Canopy 404 Dec 03, 2022
Pandas Google BigQuery

pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda

Python for Data 345 Dec 28, 2022
A Relational Database Management System for a miniature version of Twitter written in MySQL with CLI in python.

Mini-Twitter-Database This was done as a database design course project at Amirkabir university of technology. This is a relational database managemen

Ali 12 Nov 23, 2022
Dinamopy is a python helper library for dynamodb

Dinamopy is a python helper library for dynamodb. You can define your access patterns in a json file and can use dynamic method names to make operations.

Rasim Andıran 2 Jul 18, 2022
This repository is for active development of the Azure SDK for Python.

Azure SDK for Python This repository is for active development of the Azure SDK for Python. For consumers of the SDK we recommend visiting our public

Microsoft Azure 3.4k Jan 02, 2023
Async database support for Python. 🗄

Databases Databases gives you simple asyncio support for a range of databases. It allows you to make queries using the powerful SQLAlchemy Core expres

Encode 3.2k Dec 30, 2022
Sample scripts to show extracting details directly from the AIQUM database

Sample scripts to show extracting details directly from the AIQUM database

1 Nov 19, 2021
A collection of awesome sqlite tools, scripts, books, etc

Awesome Series @ Planet Open Data World (Countries, Cities, Codes, ...) • Football (Clubs, Players, Stadiums, ...) • SQLite (Tools, Books, Schemas, ..

Planet Open Data 205 Dec 16, 2022
python-bigquery Apache-2python-bigquery (🥈34 · ⭐ 3.5K · 📈) - Google BigQuery API client library. Apache-2

Python Client for Google BigQuery Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google

Google APIs 550 Jan 01, 2023
Python Wrapper For sqlite3 and aiosqlite

Python Wrapper For sqlite3 and aiosqlite

6 May 30, 2022