Classification based on Fuzzy Logic(C-Means).

Overview

CMeans_fuzzy

Classification based on Fuzzy Logic(C-Means).

Table of Contents
  1. About The Project
  2. Getting Started
  3. Sample Of Output
  4. Contributing
  5. License
  6. Contact

About The Project

Computational Intelligence Course 2nd Project: In this project the Fuzzy version of K-Means algorithm is implemented. Each datapoint isn't forced to belong only to a specific cluster, but can belong to clusters to Verying Degrees. Thats difference between Fuzzy Clustering and Normal Clustering.

Fuzzy CMeans Algorithm:

  1. Determine the number of clusters, then Generate the centroid of clusters randomly.
  2. Finding each data point belongs to which cluster (or clusters).
  3. Updating new centroid of clusters based on datapoints in the cluster.
  4. Repeat steps 2 and 3 until each cluster reaches stability.

Built With

(back to top)


Getting Started

Installation

  1. Clone the repository
   git clone https://github.com/arminZolfaghari/CMeans_fuzzy.git
  1. Run CMeans.py with python CMeans.py

Sample Of Output

Normal Clustering

alt text

Fuzzy Clustering

alt text

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repository and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)


License

Distributed under the MIT License. See LICENSE for more information.

(back to top)


Contact

Armin Zolfaghari Daryani - [email protected]
Project Link: https://github.com/arminZolfaghari/CMeans_fuzzy

(back to top)

Owner
Armin Zolfaghari Daryani
B.Sc Student of Computer Engineering at Amirkabir University of Technology(AUT)
Armin Zolfaghari Daryani
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023