Dive into Machine Learning

Overview

Dive into Machine Learning Creative Commons License Awesome

Hi there! You might find this guide helpful if:

For some great alternatives, jump to the end or check out Nam Vu's guide, Machine Learning for Software Engineers.

Of course, there is no easy path to expertise. Also, I'm not an expert! I just want to connect you with some great resources from experts. Applications of ML are all around us. I think it's in the public interest for more people to learn more about ML, especially hands-on, because there are many different ways to learn.

Whatever motivates you to dive into machine learning, if you know a bit of Python, these days you can get hands-on with a machine learning "Hello World!" in minutes.

Let's get started

Tools you'll need

If you prefer local installation

  • Python. Python 3 is the best option.
  • Jupyter Notebook. (Formerly known as IPython Notebook.)
  • Some scientific computing packages:
    • numpy
    • pandas
    • scikit-learn
    • matplotlib

You can install Python 3 and all of these packages in a few clicks with the Anaconda Python distribution. Anaconda is popular in Data Science and Machine Learning communities. (Use whichever tool you want.)

Cloud-based options

Some options you can use from your browser:

For other options, see:

Let's go!

Learn how to use Jupyter Notebook (5-10 minutes). (You can learn by screencast instead.)

Now, follow along with this brief exercise: An introduction to machine learning with scikit-learn. Do it in ipython or a Jupyter Notebook, coding along and executing the code in a notebook.

I'll wait.

What just happened?

You just classified some hand-written digits using scikit-learn. Neat huh?

Dive in

A Visual Introduction to Machine Learning

Let's learn a bit more about Machine Learning, and a couple of common ideas and concerns. Read "A Visual Introduction to Machine Learning, Part 1" by Stephanie Yee and Tony Chu.

A Visual Introduction to Machine Learning, Part 1

It won't take long. It's a beautiful introduction ... Try not to drool too much!

A Few Useful Things to Know about Machine Learning

OK. Let's dive deeper.

Read "A Few Useful Things to Know about Machine Learning" by Prof. Pedro Domingos. It's densely packed with valuable information, but not opaque.

Take a little time with this one. Take notes. Don't worry if you don't understand it all yet.

The whole paper is packed with value, but I want to call out two points:

  • Data alone is not enough. This is where science meets art in machine-learning. Quoting Domingos: "... the need for knowledge in learning should not be surprising. Machine learning is not magic; it can’t get something from nothing. What it does is get more from less. Programming, like all engineering, is a lot of work: we have to build everything from scratch. Learning is more like farming, which lets nature do most of the work. Farmers combine seeds with nutrients to grow crops. Learners combine knowledge with data to grow programs."
  • More data can beat a cleverer algorithm. Listen up, programmers. We like cool tools. Resist the temptation to reinvent the wheel, or to over-engineer solutions. Your starting point is to Do the Simplest Thing that Could Possibly Work. Quoting Domingos: "Suppose you’ve constructed the best set of features you can, but the classifiers you’re getting are still not accurate enough. What can you do now? There are two main choices: design a better learning algorithm, or gather more data. [...] As a rule of thumb, a dumb algorithm with lots and lots of data beats a clever one with modest amounts of it. (After all, machine learning is all about letting data do the heavy lifting.)"

When you work on a real Machine Learning problem, you should focus your efforts on your domain knowledge and data before optimizing your choice of algorithms. Prefer to do simple things until you have to increase complexity. You should not rush into neural networks because you think they're cool. To improve your model, get more data. Then use your knowledge of the problem to explore and process the data. You should only optimize the choice of algorithms after you have gathered enough data, and you've processed it well.

Jargon note

Just about time for a break...

Totally optional: some podcast episodes of note

First, download an interview with Prof. Domingos on the _Data Skeptic_podcast (2018). Prof. Domingos wrote the paper we read earlier. You might also start reading his book, The Master Algorithm by Prof. Pedro Domingos, a clear and accessible overview of machine learning. (It's available as an audiobook too.)

Next, subscribe to more machine learning and data science podcasts! These are great, low-effort resources that you can casually learn more from. To learn effectively, listen over time, with plenty of headspace. By the way, don't speed up technical podcasts, that can hinder your comprehension.

Subscribe to Talking Machines.

I suggest this listening order:

  • Download the "Starting Simple" episode, and listen to that soon. It supports what we read from Domingos. Ryan Adams talks about starting simple, as we discussed above. Adams also stresses the importance of feature engineering. Feature engineering is an exercise of the "knowledge" Domingos writes about. In a later episode, they share many concrete tips for feature engineering.
  • Then, over time, you can listen to the entire podcast series (start from the beginning).

Want to subscribe to more podcasts? Here's a good listicle of suggestions, and another.

OK! Take a break, come back refreshed.


Play to learn

Next, play along from one or more of notebooks.

  • Dr. Randal Olson's Example Machine Learning notebook: "let's pretend we're working for a startup that just got funded to create a smartphone app that automatically identifies species of flowers from pictures taken on the smartphone. We've been tasked by our head of data science to create a demo machine learning model that takes four measurements from the flowers (sepal length, sepal width, petal length, and petal width) and identifies the species based on those measurements alone."
  • Various notebooks by topic:
  • Notebooks in a series:
    • ageron/handson-ml2 - "Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python." Scikit-Learn, Keras, TensorFlow 2.

Find more great Jupyter Notebooks when you're ready:


Immerse yourself

Pick one of the courses below and start on your way.

Recommended course: Prof. Andrew Ng's Machine Learning on Coursera

Prof. Andrew Ng's Machine Learning is a popular and esteemed free online course. I've seen it recommended often. And emphatically.

You might like to have a pet project to play with, on the side. When you are ready for that, you could explore one of these Awesome Public Datasets, paperswithcode.com/datasets, or datasetlist.com.

Also, it's recommended to grab a textbook to use as an in-depth reference. The two I saw recommended most often were Understanding Machine Learning and Elements of Statistical Learning. You only need to use one of the two options as your main reference; here's some context/comparison to help you pick which one is right for you. You can download each book free as PDFs at those links - so grab them!

Tips for this course

Tips for studying on a busy schedule

It's hard to make time available every week. So, you can try to study more effectively within the time you have available. Here are some ways to do that:

Take my tips with a grain of salt

I am not a machine learning expert. I'm just a software developer and these resources/tips were useful to me as I learned some ML on the side.

Other courses

More free online courses I've seen recommended. (Machine Learning, Data Science, and related topics.)

Getting Help: Questions, Answers, Chats

Start with the support forums and chats related to the course(s) you're taking.

Check out datascience.stackexchange.com and stats.stackexchange.com – such as the tag, machine-learning. There are some subreddits, like /r/LearningMachineLearning and /r/MachineLearning.

Don't forget about meetups. Also, nowadays there are many active and helpful online communities around the ML ecosystem. Look for chat invitations on project pages and so on.

Supplement: Learning Pandas well

You'll want to get more familiar with Pandas.

Supplement: Cheat Sheets

Some good cheat sheets I've come across. (Please submit a Pull Request to add other useful cheat sheets.)

Assorted Tips and Resources

Risks

"Machine learning systems automatically learn programs from data." Pedro Domingos, in "A Few Useful Things to Know about Machine Learning." The programs you generate will require maintenance. Like any way of creating programs faster, you can rack up technical debt.

Here is the abstract of Machine Learning: The High-Interest Credit Card of Technical Debt:

Machine learning offers a fantastically powerful toolkit for building complex systems quickly. This paper argues that it is dangerous to think of these quick wins as coming for free. Using the framework of technical debt, we note that it is remarkably easy to incur massive ongoing maintenance costs at the system level when applying machine learning. The goal of this paper is highlight several machine learning specific risk factors and design patterns to be avoided or refactored where possible. These include boundary erosion, entanglement, hidden feedback loops, undeclared consumers, data dependencies, changes in the external world, and a variety of system-level anti-patterns.

If you're following this guide, you should read that paper. You can also listen to a podcast episode interviewing one of the authors of this paper.

That's not a comprehensive list, only a collection of starting-points to learn more.

Skilling up

What are some ways to practice?

One way: competitions and challenges

You need practice. On Hacker News, user olympus commented to say you could use competitions to practice and evaluate yourself. Kaggle and ChaLearn are hubs for Machine Learning competitions. (You can find more competitions here or here.)

You also need understanding. You should review what Kaggle competition winners say about their solutions, for example, the "No Free Hunch" blog. These might be over your head at first but once you're starting to understand and appreciate these, you know you're getting somewhere.

Competitions and challenges are just one way to practice! Machine Learning isn't just about Kaggle competitions.

Another way: try doing some practice studies

Here's a complementary way to practice: do practice studies.

  1. Ask a question. Start exploring some data. The "most important thing in data science is the question" (Dr. Jeff T. Leek). So start with a question. Then, find real data. Analyze it. Then ...
  2. Communicate results. When you think you have a novel finding, ask for review. When you're still learning, ask in informal communities (some are linked below).
  3. Learn from feedback. Consider learning in public, it works great for some folks. (Don't pressure yourself though! Do what works for you.)

How can you come up with interesting questions? Here's one way. Pick a day each week to look for public datasets and write down some questions that come to mind. Also, sign up for Data is Plural, a newsletter of interesting datasets. When a question inspires you, try exploring it with the skills you're learning.

This advice, to do practice studies and learn from review, is based on a conversation with Dr. Randal S. Olson. Here's more advice from Olson, quoted with permission:

I think the best advice is to tell people to always present their methods clearly and to avoid over-interpreting their results. Part of being an expert is knowing that there's rarely a clear answer, especially when you're working with real data.

As you repeat this process, your practice studies will become more scientific, interesting, and focused. Also, here's a video about the scientific method in data science.)

More machine learning career-related links

Some communities to know about

Peer review

OpenReview.net "aims to promote openness in scientific communication, particularly the peer review process."

  • Open Peer Review: We provide a configurable platform for peer review that generalizes over many subtle gradations of openness, allowing conference organizers, journals, and other "reviewing entities" to configure the specific policy of their choice. We intend to act as a testbed for different policies, to help scientific communities experiment with open scholarship while addressing legitimate concerns regarding confidentiality, attribution, and bias.
  • Open Publishing: Track submissions, coordinate the efforts of editors, reviewers and authors, and host… Sharded and distributed for speed and reliability.
  • Open Access: Free access to papers for all, free paper submissions. No fees.
More about OpenReview.net
  • Open Discussion: Hosting of accepted papers, with their reviews, comments. Continued discussion forum associated with the paper post acceptance. Publication venue chairs/editors can control structure of review/comment forms, read/write access, and its timing.
  • Open Directory: Collection of people, with conflict-of-interest information, including institutions and relations, such as co-authors, co-PIs, co-workers, advisors/advisees, and family connections.
  • Open Recommendations: Models of scientific topics and expertise. Directory of people includes scientific expertise. Reviewer-paper matching for conferences with thousands of submissions, incorporating expertise, bidding, constraints, and reviewer balancing of various sorts. Paper recommendation to users.
  • Open API: We provide a simple REST API [...]
  • Open Source: We are committed to open source. Many parts of OpenReview are already in the OpenReview organization on GitHub. Some further releases are pending a professional security review of the codebase.
  • OpenReview.net is created by Andrew McCallum’s Information Extraction and Synthesis Laboratory in the College of Information and Computer Sciences at University of Massachusetts Amherst

  • OpenReview.net is built over an earlier version described in the paper Open Scholarship and Peer Review: a Time for Experimentation published in the ICML 2013 Peer Review Workshop.

  • OpenReview is a long-term project to advance science through improved peer review, with legal nonprofit status through Code for Science & Society. We gratefully acknowledge the support of the great diversity of OpenReview Sponsors––scientific peer review is sacrosanct, and should not be owned by any one sponsor.

Production, Deployment, MLOps

If you are learning about MLOps but find it overwhelming, these resources might help you get your bearings:

Recommended awesomelists to save/star/watch:


Deep Learning

Take note: some experts warn us not to get too far ahead of ourselves, and encourage learning ML fundamentals before moving onto deep learning. That's paraphrasing from some of the linked coursework in this guide — for example, Prof. Andrew Ng encourages building foundations in ML before studying DL. Perhaps you're ready for that now, or perhaps you'd like to get started soon and learn some DL in parallel to your other ML learnings.

When you're ready to dive into Deep Learning, here are some helpful resources.

Easier sharing of deep learning models and demos

  • Replicate "makes it easy to share a running machine learning model"
    • Easily try out deep learning models from your browser
    • The demos link to papers/code on GitHub, if you want to dig in and see how something works
    • The models run in containers built by cog, "containers for machine learning." It's an open-source tool for putting models into reproducible Docker containers.

Collaborate with Domain Experts

Machine Learning can be powerful, but it is not magic.

Whenever you apply Machine Learning to solve a problem, you are going to be working in some specific problem domain. To get good results, you or your team will need "substantive expertise" (to re-use a phrase from earlier), which is related to "domain knowledge." Learn what you can, for yourself... But you should also collaborate with experts. You'll have better results if you collaborate with subject-matter experts and domain experts.

Machine Learning and User Experience (UX)

I couldn't say it better:

Machine learning won’t figure out what problems to solve. If you aren’t aligned with a human need, you’re just going to build a very powerful system to address a very small—or perhaps nonexistent—problem.

That quote is from "The UX of AI" by Josh Lovejoy. In other words, You Are Not The User. Suggested reading: Martin Zinkevich's "Rules of ML Engineering", Rule #23: "You are not a typical end user"


Big data

Here are some useful links regarding Big Data and ML.

See also: the MLOps section!

If you are working with data-intensive applications at all, I'll recommend this book:

  • Designing Data-Intensive Applications by Martin Kleppman. (You can start reading it online, free, via Safari Books.) It's not specific to Machine Learning, but you can bridge that gap yourself.

More Data Science materials

Here are some additional Data Science resources:

Aside: Bayesian Statistics and Machine Learning

From the "Bayesian Machine Learning" overview on Metacademy:

... Bayesian ideas have had a big impact in machine learning in the past 20 years or so because of the flexibility they provide in building structured models of real world phenomena. Algorithmic advances and increasing computational resources have made it possible to fit rich, highly structured models which were previously considered intractable.

Here are some awesome resources for learning Bayesian methods.

(↑ Back to top)


Finding Open-Source Libraries

Natural Language Processing (NLP)

This is just a small

Non-sequitur

These next two links are not related to ML. But since you're here, I have a hunch you might find them interesting too:


More ways to "Dive into Machine Learning"

Here are some other guides to learning Machine Learning. They can be alternatives or supplements to this guide.

(↑ Back to top)

Owner
Michael Floering
"Computers perform repetitive tasks, people solve problems" — Jez Humble
Michael Floering
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark ĂŠ uma biblioteca Spark escrita em Python, e seu objetivo ĂŠ permitir a anĂĄlise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022