Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Related tags

Deep Learningabcd
Overview

Action-Based Conversations Dataset (ABCD)

This respository contains the code and data for ABCD (Chen et al., 2021)

Introduction

Whereas existing goal-oriented dialogue datasets focus mainly on identifying user intents, customer interactions in reality often involve agents following multi-step procedures derived from explicitly-defined guidelines. For example, in a online shopping scenario, a customer might request a refund for a past purchase. However, before honoring such a request, the agent should check the company policies to see if a refund is warranted. It is very likely that the agent will need to verify the customer's identity and check that the purchase was made within a reasonable timeframe.

To study dialogue systems in more realistic settings, we introduce the Action-Based Conversations Dataset (ABCD), where an agent's actions must be balanced between the desires expressed by the customer and the constraints set by company policies. The dataset contains over 10K human-to-human dialogues with 55 distinct user intents requiring unique sequences of actions to achieve task success. We also design a new technique called Expert Live Chat for collecting data when there are two unequal users engaging in real-time conversation. Please see the paper for more details.

Paper link: https://arxiv.org/abs/2104.00783

Blog link: https://www.asapp.com/blog/action-based-conversations-dataset/

Agent Dashboard

Customer Site

Usage

All code is run by executing the corresponding command within the shell script run.sh, which will kick off the data preparation and training within main.py. To use, first unzip the file found in data/abcd_v1.1.json.gz using the gunzip command (or similar). Then comment or uncomment the appropriate lines in the shell script to get desired behavior. Finally, enter sh run.sh into the command line to get started. Use the --help option of argparse for flag details or read through the file located within utils/arguments.py.

Preparation

Raw data will be loaded from the data folder and prepared into features that are placed into Datasets. If this has already occured, then the system will instead read in the prepared features from cache.

If running CDS for the first time, uncomment out the code within the run script to execute embed.py which will prepare the utterances for ranking.

Training

To specify the task for training, simply use the --task option with either ast or cds, for Action State Tracking and Cascading Dialogue Success respectively. Options for different model types are bert, albert and roberta. Loading scripts can be tuned to offer various other behaviors.

Evaluation

Activate evaluation using the --do-eval flag. By default, run.sh will perform cascading evaluation. To include ablations, add the appropriate options of --use-intent or --use-kb.

Data

The preprocessed data is found in abcd_v1.1.json which is a dictionary with keys of train, dev and test. Each split is a list of conversations, where each conversation is a dict containing:

  • convo_id: a unique conversation identifier
  • scenario: the ground truth scenario used to generate the prompt
  • original: the raw conversation of speaker and utterances as a list of tuples
  • delexed: the delexicalized conversation used for training and evaluation, see below for details

We provide the delexed version so new models performing the same tasks have comparable pre-processing. The original data is also provided in case you want to use the utterances for some other purpose.

For a quick preview, a small sample of chats is provided to help get started. Concretely, abcd_sample.json is a list containing three random conversations from the training set.

Scenario

Each scene dict contains details about the customer setup along with the underlying flow and subflow information an agent should use to address the customer concern. The components are:

  • Personal: personal data related to the (fictional) customer including account_id, customer name, membership level, phone number, etc.
  • Order: order info related to what the customer purchased or would like to purchase. Includes address, num_products, order_id, product names, and image info
  • Product: product details if applicable, includes brand name, product type and dollar amount
  • Flow and Subflow: these represent the ground truth user intent. They are used to generate the prompt, but are not shown directly the customer. The job of the agent is to infer this (latent) intent and then match against the Agent Guidelines to resolve the customer issue.

Guidelines

The agent guidelines are offered in their original form within Agent Guidelines for ABCD. This has been transformed into a formatted document for parsing by a model within data/guidelines.json. The intents with their button actions about found within kb.json. Lastly, the breakdown of all flows, subflows, and actions are found within ontology.json.

Conversation

Each conversation is made up of a list of turns. Each turn is a dict with five parts:

  • Speaker: either "agent", "customer" or "action"
  • Text: the utterance of the agent/customer or the system generated response of the action
  • Turn_Count: integer representing the turn number, starting from 1
  • Targets : list of five items representing the subtask labels
    • Intent Classification (text) - 55 subflow options
    • Nextstep Selection (text) - take_action, retrieve_utterance or end_conversation; 3 options
    • Action Prediction (text) - the button clicked by the agent; 30 options
    • Value Filling (list) - the slot value(s) associated with the action above; 125 options
    • Utterance Ranking (int) - target position within list of candidates; 100 options
  • Candidates: list of utterance ids representing the pool of 100 candidates to choose from when ranking. The surface form text can be found in utterances.json where the utt_id is the index. Only applicable when the current turn is a "retrieve_utterance" step.

In contrast to the original conversation, the delexicalized version will replace certain segments of text with special tokens. For example, an utterance might say "My Account ID is 9KFY4AOHGQ". This will be changed into "my account id is <account_id>".

Contact

Please email [email protected] for questions or feedback.

Citation

@inproceedings{chen2021abcd,
    title = "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems",
    author = "Chen, Derek and
        Chen, Howard and
        Yang, Yi and
        Lin, Alex and
        Yu, Zhou",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for 
    	Computational Linguistics: Human Language Technologies, {NAACL-HLT} 2021",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.239",
    pages = "3002--3017"
}
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022