This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

Overview

candle-simulator

arXiv AAAI Get the dataset GitHub

This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset.

The rendered version of the dataset is provided at the IITH-CANDLE repository.

Environment Setup

Download and install Blender. Make sure that it's accessible from the command line.

Note: Tests and rendering were performed on version 2.90. Unless future versions include breaking changes, functionality should be largely unaffected. We will be happy to receive a PR / issue if any incompatibilities arise.

Running the script

The main script candle_simulator.py runs in an instance of blender invoked by the command:

# starts blender in the background, without audio and runs the python script
$ blender -b -noaudio -P candle_simulator.py

Sample images from IITH-CANDLE

IITH-CANDLE grid The rendered version of the dataset is provided at the IITH-CANDLE repository.

Extending IITH-CANDLE

Each factor of variation can be independently modified or extended by simply editing or adding .blend files under ./data/ consisting of just that factor. The script then combines them independently while generating the dataset.

Steps to extend

  1. Add in or modify a factor, say we add ./objects/monkey.blend. Ensure that the filename and the property name of the factor in Blender match.
  2. Update properties: object_type to include monkey.
  3. Rendering a version now will augment IITH-CANDLE with all variants of monkey.

Conventions followed

Factor Conventions
objects We recommend the objects fit in a 1x1x1m space at the origin. This helps with uniform translation and scaling. Also update properties: object_type.
scenes They are node-based world textures pointing to a HDRI image. We recommend just copying an existing one over and modifying the image to point to the required one. Also update scenes and bounds in the script with the XY coordinates where objects are allowed to be placed.
size Just modify properties: size in the script. The objects will be scaled at runtime.
rotation Just modify properties: rotation in the script. The objects will be rotated at runtime.
lights To modify the type of light, edit lights.blend. If only the positions have to be changed, just edit lights and light_position correspondingly.
color (materials) Vanilla Blender materials. Just modify properties: color as well.

How to cite our work

If you use IITH-CANDLE, please consider citing:

@article{candle, 
title={On Causally Disentangled Representations},  
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
author={Abbavaram Gowtham Reddy, Benin Godfrey L, and Vineeth N Balasubramanian}, 
year={2022},
month={February}
}

License

This work is licensed under the MIT License and the dataset itself is licensed under the Creative Commons Attribution 4.0 International License.

This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022