This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Overview

Differentiable Volumetric Rendering

Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page

This repository contains the code for the paper Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{DVR,
    title = {Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision},
    author = {Niemeyer, Michael and Mescheder, Lars and Oechsle, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called dvr using

conda env create -f environment.yaml
conda activate dvr

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

You can now test our code on the provided input images in the demo folder. To this end, start the generation process for one of the config files in the configs/demo folder. For example, simply run

python generate.py configs/demo/demo_combined.yaml

This script should create a folder out/demo/demo_combined where the output meshes are stored. The script will copy the inputs into the generation/inputs folder and creates the meshes in the generation/meshes folder. Moreover, the script creates a generation/vis folder where both inputs and outputs are copied together.

Dataset

Download Datasets

To evaluate a pre-trained model or train a new model from scratch, you have to obtain the respective dataset. We use three different datasets in the DVR project:

  1. ShapeNet for 2.5D supervised models (using the Choy et. al. renderings as input and our renderings as supervision)
  2. ShapeNet for 2D supervised models (using the Kato et. al. renderings)
  3. A subset of the DTU multi-view dataset

You can download our preprocessed data using

bash scripts/download_data.sh

and following the instructions. The sizes of the datasets are 114GB (a), 34GB (b), and 0.5GB (c).

This script should download and unpack the data automatically into the data folder.

Data Convention

Please have a look at the FAQ for details regarding the type of camera matrices we use.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Generation

To generate meshes using a trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with _pretrained.yaml.

For example, for our 2.5D supervised single-view reconstruction model run

python generate.py configs/single_view_reconstruction/multi_view_supervision/ours_depth_pretrained.yaml

or for our multi-view reconstruction from RGB images and sparse depth maps for the birds object run

python generate.py configs/multi_view_reconstruction/birds/ours_depth_mvs_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the out/.../pretrained folders.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

Generation From Your Own Single Images

Similar to our demo, you can easily generate 3D meshes from your own single images. To this end, create a folder which contains your own images (e.g. media/my_images). Next, you can reuse the config file configs/demo/demo_combined.yaml and just adjust the data - path and training - out_dir arguments to your needs. For example, you can set the config file to

inherit_from: configs/single_view_reconstruction/multi_view_supervision/ours_combined_pretrained.yaml
data:
  dataset_name: images
  path: media/my_images
training:
  out_dir:  out/my_3d_models

to generate 3D models for the images in media/my_images. The models will be saved to out/my_3d_models. Similar to before, to start the generation process, run

python generate.py configs/demo/demo_combined.yaml 

Note: You can only expect our model to provide reasonable results on data which is similar to what it was trained on (white background, single object, etc.).

Evaluation

For evaluation of the models, we provide the script eval_meshes.py. You can run it using

python eval_meshes.py CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory.

For available training options, please take a look at configs/default.yaml.

Futher Information

More Work on Implicit Representations

If you like the DVR project, please check out other works on implicit representions from our group:

Other Relevant Works

Also check out other exciting works on inferring implicit representations without 3D supervision:

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022