3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Overview

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay

3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification

Technical Report slides
video

Description

Official implementation of our solution (3rd place) for ICCV 2021 Workshop Self-supervised Learning for Next-Generation Industry-level Autonomous Driving (SSLAD) Track 3A - Continual Learning Classification using "Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay".

How to run

First, install dependencies

# clone project   
git clone https://github.com/mrifkikurniawan/sslad.git

# install project   
cd sslad 
pip3 install -r requirements.txt   

Next, preparing the dataset via links below.

Next, run training.

# run training module with our proposed cl strategy
python3.9 classification.py \
--config configs/cl_strategy.yaml \
--name {path/to/log} \
--root {root/of/your/dataset} \
--num_workers {num workers} \
--gpu_id {your-gpu-id} \
--comment {any-comments} 
--store \

or see the train.sh for the example.

Experiments Results

Method Val AMCA Test AMCA
Baseline (Uncertainty Replay)* 57.517 -
+ Multi-step Lr Scheduler* 59.591 (+2.07) -
+ Soft Labels Retrospection* 59.825 (+0.23) -
+ Contrastive Learning* 60.363 (+0.53) 59.68
+ Supervised Contrastive Learning* 61.49 (+1.13) -
+ Change backbone to ResNet50-D* 62.514 (+1.02) -
+ Focal loss* 62.71 (+0.19) -
+ Cost Sensitive Cross Entropy 63.33 (+0.62) -
+ Class Balanced Focal loss* 64.01 (+1.03) 64.53 (+4.85)
+ Head Fine-tuning with Class Balanced Replay 65.291 (+1.28) 62.58 (-1.56)
+ Head Fine-tuning with Soft Labels Retrospection 66.116 (+0.83) 62.97 (+0.39)

*Applied to our final method.

File overview

classification.py: Driver code for the classification subtrack. There are a few things that can be changed here, such as the model, optimizer and loss criterion. There are several arguments that can be set to store results etc. (Run classification.py --help to get an overview, or check the file.)

class_strategy.py: Provides an empty plugin. Here, you can define your own strategy, by implementing the necessary callbacks. Helper methods and classes can be ofcourse implemented as pleased. See here for examples of strategy plugins.

data_intro.ipynb: In this notebook the stream of data is further introduced and explained. Feel free to experiment with the dataset to get a good feeling of the challenge.

Note: not all callbacks have to be implemented, you can just delete those that you don't need.

classification_util.py & haitain_classification.py: These files contain helper code for dataloading etc. There should be no reason to change these.

Owner
Rifki Kurniawan
MS student at Xi'an Jiaotong University; Artificial Intelligence Engineer at Nodeflux
Rifki Kurniawan
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022