Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Overview

Render In-between: Motion Guided Video Synthesis for Action Interpolation

[Paper] [Supp] [arXiv] [4min Video]

This is the official Pytorch implementation for our work. Our proposed framework is able to synthesize challenging human videos in an action interpolation setting. This repository contains three subdirectories, including code and scripts for preparing our collected HumanSlomo dataset, the implementation of human motion modeling network trained on the large-scale AMASS dataset, as well as the pose-guided neural rendering model to synthesize video frames from poses. Please check each subfolder for the detailed information and how to execute the code.

HumanSlomo Dataset

We collected a set of high FPS creative commons of human videos from Youtube. The videos are manually split into several continuous clips for training and test. You can also build your video dataset using the provided scripts.

Human Motion Modeling

Our human motion model is trained on a large scale motion capture dataset AMASS. We provide code to synthesize 2D human motion sequences for training from the SMPL parameters defined in AMASS. You can also simply use the pre-trained model to interpolate low-frame-rate noisy human body joints to high-frame-rate motion sequences.

Pose Guided Neural Rendering

The neural rendering model learned to map the pose sequences back to the original video domain. The final result is composed with the background warping from DAIN and the generated human body according to the predicted blending mask autoregressively. The model is trained in a conditional image generation setting, given only low-frame-rate videos as training data. Therefore, you can train your custom neural rendering model by constructing your own video dataset.

Quick Start

⬇️ example.zip [MEGA] (25.4MB)

Download this example action clip which includes necessary input files for our pipeline.

The first step is generating high FPS motion from low FPS poses with our motion modeling network.

cd Human_Motion_Modelling
python inference.py --pose-dir ../example/input_poses --save-dir ../example/ --upsample-rate 2

⬇️ checkpoints.zip [MEGA] (147.2MB)

Next we will map high FPS poses back to video frames with our pose-guided neural rendering. Download the checkpoint files to the corresponding folder to run the model.

cd Pose_Guided_Neural_Rendering
python inference.py --input-dir ../example/ --save-dir ../example/

Citation

@inproceedings{ho2021render,
    author = {Hsuan-I Ho, Xu Chen, Jie Song, Otmar Hilliges},
    title = {Render In-between: Motion GuidedVideo Synthesis for Action Interpolation},
    booktitle = {BMVC},
    year = {2021}
}

Acknowledgement

We use the pre-processing code in AMASS to synthesize our motion dataset. AlphaPose is used for generating 2D human body poses. DAIN is used for warping background images. Our human motion modeling network is based on the transformer backbone in DERT. Our pose-guided neural rendering model is based on imaginaire. We sincerely thank these authors for their awesome work.

Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022