This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

Overview

optimaladj: A library for computing optimal adjustment sets in causal graphical models

This package implements the algorithms introduced in Smucler, Sapienza and Rotnitzky (2021) and Smucler and Rotnitzky (2022) to compute optimal adjustment sets in causal graphical models. The package provides a class, called CasualGraph, that inherits from networkx's DiGraph class and has methods to compute: the optimal, optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets for individualized treatment rules (point exposure dynamic treatment regimes) in non-parametric causal graphical models with latent variables.

Suppose we are given a causal graph G specifying:

  • a treatment variable A,
  • an outcome variable Y,
  • a set of observable (that is, non-latent) variables N,
  • a set of observable variables that will be used to allocate treatment L, and possibly
  • positive costs associated with each observable variable.

Suppose moreover that there exists at least one adjustment set with respect to A and Y in G that is comprised of observable variables.

An optimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable adjustment sets.

An optimal minimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimal adjustment sets. An observable minimal adjustment set is a valid adjustment set such that all its variables are observable and the removal of any variable from it destroys validity.

An optimal minimum cardinality adjustment set is an observable adjustment set that has minimum possible cardinality and yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimum cardinality adjustment sets.

An optimal minimum cost adjustment set is defined similarly, being optimal in the class of observable adjustment sets that have minimum possible cost.

Under these assumptions, Smucler, Sapienza and Rotnitzky (2020) and Smucler and Rotnitzky (2022) show that optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets always exist, and can be computed in polynomial time. They also provide a sufficient criterion for the existance of an optimal adjustment set and a polynomial time algorithm to compute it when it exists.

Check out our notebook with examples.

Installation

You can install the stable version of the package from PyPI by running

pip install optimaladj

You can install the development version of the package from Github by running

pip install git+https://github.com/facusapienza21/optimaladj.git#egg=optimaladj
Owner
Facundo Sapienza
PhD Student at UC Berkeley interested in Machine Learning and Physics. Previously studied Physics and Mathematics in the University of Buenos Aires
Facundo Sapienza
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022