This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

Overview

optimaladj: A library for computing optimal adjustment sets in causal graphical models

This package implements the algorithms introduced in Smucler, Sapienza and Rotnitzky (2021) and Smucler and Rotnitzky (2022) to compute optimal adjustment sets in causal graphical models. The package provides a class, called CasualGraph, that inherits from networkx's DiGraph class and has methods to compute: the optimal, optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets for individualized treatment rules (point exposure dynamic treatment regimes) in non-parametric causal graphical models with latent variables.

Suppose we are given a causal graph G specifying:

  • a treatment variable A,
  • an outcome variable Y,
  • a set of observable (that is, non-latent) variables N,
  • a set of observable variables that will be used to allocate treatment L, and possibly
  • positive costs associated with each observable variable.

Suppose moreover that there exists at least one adjustment set with respect to A and Y in G that is comprised of observable variables.

An optimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable adjustment sets.

An optimal minimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimal adjustment sets. An observable minimal adjustment set is a valid adjustment set such that all its variables are observable and the removal of any variable from it destroys validity.

An optimal minimum cardinality adjustment set is an observable adjustment set that has minimum possible cardinality and yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimum cardinality adjustment sets.

An optimal minimum cost adjustment set is defined similarly, being optimal in the class of observable adjustment sets that have minimum possible cost.

Under these assumptions, Smucler, Sapienza and Rotnitzky (2020) and Smucler and Rotnitzky (2022) show that optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets always exist, and can be computed in polynomial time. They also provide a sufficient criterion for the existance of an optimal adjustment set and a polynomial time algorithm to compute it when it exists.

Check out our notebook with examples.

Installation

You can install the stable version of the package from PyPI by running

pip install optimaladj

You can install the development version of the package from Github by running

pip install git+https://github.com/facusapienza21/optimaladj.git#egg=optimaladj
Owner
Facundo Sapienza
PhD Student at UC Berkeley interested in Machine Learning and Physics. Previously studied Physics and Mathematics in the University of Buenos Aires
Facundo Sapienza
๐ŸŽ 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. โ“ W

Open Source Toontown Servers 5 Jan 09, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland ๐Ÿ”ฅ

Jiaxi Jiang 282 Jan 02, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
๐Ÿ”€ Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Juliรกn Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023