Depth-Aware Video Frame Interpolation (CVPR 2019)

Related tags

Deep LearningDAIN
Overview

DAIN (Depth-Aware Video Frame Interpolation)

Project | Paper

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang

IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CVPR 2019

This work is developed based on our TPAMI work MEMC-Net, where we propose the adaptive warping layer. Please also consider referring to it.

Table of Contents

  1. Introduction
  2. Citation
  3. Requirements and Dependencies
  4. Installation
  5. Testing Pre-trained Models
  6. Downloading Results
  7. Slow-motion Generation
  8. Training New Models
  9. Google Colab Demo

Introduction

We propose the Depth-Aware video frame INterpolation (DAIN) model to explicitly detect the occlusion by exploring the depth cue. We develop a depth-aware flow projection layer to synthesize intermediate flows that preferably sample closer objects than farther ones. Our method achieves state-of-the-art performance on the Middlebury dataset. We provide videos here.

Citation

If you find the code and datasets useful in your research, please cite:

@inproceedings{DAIN,
    author    = {Bao, Wenbo and Lai, Wei-Sheng and Ma, Chao and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan}, 
    title     = {Depth-Aware Video Frame Interpolation}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2019}
}
@article{MEMC-Net,
     title={MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement},
     author={Bao, Wenbo and Lai, Wei-Sheng, and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan},
     journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
     doi={10.1109/TPAMI.2019.2941941},
     year={2018}
}

Requirements and Dependencies

  • Ubuntu (We test with Ubuntu = 16.04.5 LTS)
  • Python (We test with Python = 3.6.8 in Anaconda3 = 4.1.1)
  • Cuda & Cudnn (We test with Cuda = 9.0 and Cudnn = 7.0)
  • PyTorch (The customized depth-aware flow projection and other layers require ATen API in PyTorch = 1.0.0)
  • GCC (Compiling PyTorch 1.0.0 extension files (.c/.cu) requires gcc = 4.9.1 and nvcc = 9.0 compilers)
  • NVIDIA GPU (We use Titan X (Pascal) with compute = 6.1, but we support compute_50/52/60/61 devices, should you have devices with higher compute capability, please revise this)

Installation

Download repository:

$ git clone https://github.com/baowenbo/DAIN.git

Before building Pytorch extensions, be sure you have pytorch >= 1.0.0:

$ python -c "import torch; print(torch.__version__)"

Generate our PyTorch extensions:

$ cd DAIN
$ cd my_package 
$ ./build.sh

Generate the Correlation package required by PWCNet:

$ cd ../PWCNet/correlation_package_pytorch1_0
$ ./build.sh

Testing Pre-trained Models

Make model weights dir and Middlebury dataset dir:

$ cd DAIN
$ mkdir model_weights
$ mkdir MiddleBurySet

Download pretrained models,

$ cd model_weights
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best.pth

and Middlebury dataset:

$ cd ../MiddleBurySet
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-color-allframes.zip
$ unzip other-color-allframes.zip
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-gt-interp.zip
$ unzip other-gt-interp.zip
$ cd ..

preinstallations:

$ cd PWCNet/correlation_package_pytorch1_0
$ sh build.sh
$ cd ../my_package
$ sh build.sh
$ cd ..

We are good to go by:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

The interpolated results are under MiddleBurySet/other-result-author/[random number]/, where the random number is used to distinguish different runnings.

Downloading Results

Our DAIN model achieves the state-of-the-art performance on the UCF101, Vimeo90K, and Middlebury (eval and other). Download our interpolated results with:

$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/UCF101_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Vimeo90K_interp_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_eval_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_other_DAIN.zip

Slow-motion Generation

Our model is fully capable of generating slow-motion effect with minor modification on the network architecture. Run the following code by specifying time_step = 0.25 to generate x4 slow-motion effect:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.25

or set time_step to 0.125 or 0.1 as follows

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.125
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.1

to generate x8 and x10 slow-motion respectively. Or if you would like to have x100 slow-motion for a little fun.

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.01

You may also want to create gif animations by:

$ cd MiddleBurySet/other-result-author/[random number]/Beanbags
$ convert -delay 1 *.png -loop 0 Beanbags.gif //1*10ms delay 

Have fun and enjoy yourself!

Training New Models

Download the Vimeo90K triplet dataset for video frame interpolation task, also see here by Xue et al., IJCV19.

$ cd DAIN
$ mkdir /path/to/your/dataset & cd /path/to/your/dataset 
$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Download the pretrained MegaDepth and PWCNet models

$ cd MegaDepth/checkpoints/test_local
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best_generalization_net_G.pth
$ cd ../../../PWCNet
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/pwc_net.pth.tar
$ cd  ..

Run the training script:

$ CUDA_VISIBLE_DEVICES=0 python train.py --datasetPath /path/to/your/dataset --batch_size 1 --save_which 1 --lr 0.0005 --rectify_lr 0.0005 --flow_lr_coe 0.01 --occ_lr_coe 0.0 --filter_lr_coe 1.0 --ctx_lr_coe 1.0 --alpha 0.0 1.0 --patience 4 --factor 0.2

The optimized models will be saved to the model_weights/[random number] directory, where [random number] is generated for different runs.

Replace the pre-trained model_weights/best.pth model with the newly trained model_weights/[random number]/best.pth model. Then test the new model by executing:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

Google Colab Demo

This is a modification of DAIN that allows the usage of Google Colab and is able to do a full demo interpolation from a source video to a target video.

Original Notebook File by btahir can be found here.

To use the Colab, follow these steps:

  • Download the Colab_DAIN.ipynb file (link).
  • Visit Google Colaboratory (link)
  • Select the "Upload" option, and upload the .ipynb file
  • Start running the cells one by one, following the instructions.

Colab file authors: Styler00Dollar and Alpha.

Contact

Wenbo Bao; Wei-Sheng (Jason) Lai

License

See MIT License

The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex BĂ€uerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning đŸ§© Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022