Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Overview

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchmarks. New annotation for both datasets is created with an extra attention to the reliability of the ground truth and three new protocols of varying difficulty are introduced. We additionally introduce 15 new challenging queries per dataset and a new set of 1M hard distractors.

This package provides support in downloading and using the new benchmark.

MATLAB

Tested with MATLAB R2017a on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> example_evaluate

It automatically downloads dataset images, the revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][1 5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.00 53.00]

or

>> rparis6k: mAP E: 92.12, M: 77.20, H: 56.32
>> rparis6k: [email protected][1 5 10] E: [100.00 97.14 96.14], M: [100.00 98.86 98.14], H: [94.29 90.29 89.14]

Python

Tested with Python 3.5.3 on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> python3 example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> python3 example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> python3 example_evaluate

It automatically downloads dataset images, revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][ 1  5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.   53.  ]

or

>> rparis6k: mAP E: 92.12, M: 77.2, H: 56.32
>> rparis6k: [email protected][ 1  5 10] E: [100.    97.14  96.14], M: [100.    98.86  98.14], H: [94.29 90.29 89.14]

Related publication

@inproceedings{RITAC18,
 author = {Radenovi\'{c}, F. and Iscen, A. and Tolias, G. and Avrithis, Y. and Chum, O.},
 title = {Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
 booktitle = {CVPR},
 year = {2018}
}
Owner
Filip Radenovic
Research Scientist at Facebook
Filip Radenovic
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022