Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Overview

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs)

PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584

PHM Linear Layer Illustration PHC-GNN Layer Computation Diagram

Overview

Here we provide the implementation of Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) in PyTorch Geometric, along with 6 minimal execution examples in the benchmarks/ directory.

This repository is organised as follows:

  • phc/hypercomplex/ contains the implementation of the PHC-GNN with all its submodules. This directory resembles the quaternion/ in most cases, with the user-defined phm-dimension n. For more details, check the subdirectory README.md
  • phc/quaternion/ contains the implementation for quaternion GNN with all its submodules. For more details, check the subdirectory README.md
  • benchmarks/ contains the python training-scripts for 3 datasets from Open Graph Benchmark (OGB) and 3 datasets from Benchmarking-GNNs. Additionally, we provide 6 bash-scripts with default arguments to run our models.

Generally speaking, the phc/hypercomplex/ subdirectory also includes the quaternion-valued GNN, with the modification to only work on torch.Tensor objects. The phc/quaternion/ subdirectory was first implemented with the fixed rules of the quaternion-algebra, such as how to perform addition, and multiplication which can be summarized in the quaternion-valued affine transformation. The phc/hypercomplex/ directory generalizes such operations to work directly on torch.Tensor objects, making it applicable to many already existing projects.
For completeness and to share our initial motivation of this project, we also provide the implementations from the phc/quaternion/ subdirectory.

Installation

Requirements

To run our examples, the main requirements are listed in the environment_gpu.yml file. The main requirements used are the following:

python=3.8.5
pytest=6.2.1
cudatoolkit=10.1
cudnn=7.6.5
numpy=1.19.2
scipy=1.5.2
pytorch=1.7.1
torch-geometric=1.6.1
ogb=1.2.4

Conda

Create a new environment:

git clone https://github.com/bayer-science-for-a-better-life/phc-gnn.git
cd phc-gnn
conda env create -f environment_gpu.yml
conda activate phc-gnn

Install Pytorch Geometric and this module with pip by executing the bash-script install_pyg.sh

chmod +x install_pyg.sh
bash install_pyg.sh

#install this library
pip install -e .

Run the implemented pytests in the subdirectories, by executing:

pytest .

Getting started

Run our example scripts in the benchmarks/ directory. Make sure to have the phc-gnn environment activated. For more details, please have a look at benchmarks/README.md.

Reference

If you make use of the implementations of quaternion or parameterized hypercomplex GNN in your research, please cite our manuscript:

@misc{le2021parameterized,
      title={Parameterized Hypercomplex Graph Neural Networks for Graph Classification}, 
      author={Tuan Le and Marco Bertolini and Frank Noé and Djork-Arné Clevert},
      year={2021},
      eprint={2103.16584},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2103.16584}
}

License

GPL-3

Owner
Bayer AG
Science for a better life
Bayer AG
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023