The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Overview

Object-Placement-Assessment-Dataset-OPA

Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object placement. The foreground object should be placed at a reasonable location on the background considering location, size, occlusion, semantics, and etc.

Our dataset OPA is a synthesized dataset for Object Placement Assessment based on COCO dataset. We select unoccluded objects from multiple categories as our candidate foreground objects. The foreground objects are pasted on their compatible background images with random sizes and locations to form composite images, which are sent to human annotators for rationality labeling. Finally, we split the collected dataset into training set and test set, in which the background images and foreground objects have no overlap between training set and test set. We show some example positive and negative images in our dataset in the figure below.

Illustration of OPA dataset samples: Some positive and negative samples in our OPA dataset and the inserted foreground objects are marked with red outlines. Top row: positive samples; Bottom rows: negative samples, including objects with inappropriate size (e.g., f, g, h), without supporting force (e.g., i, j, k), appearing in the semantically unreasonable place (e.g., l, m, n), with unreasonable occlusion (e.g., o, p, q), and with inconsistent perspectives (e.g., r, s, t).

Our OPA dataset contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. Besides, the training (resp., test) set contains 2,701 (resp., 1,436) unrepeated foreground objects and1,236 (resp., 153) unrepeated background images. The OPA dataset is provided in Baidu Cloud (access code: qb1r) or Google Drive.

Prerequisites

  • Python

  • Pytorch

  • PIL

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.git
    cd Object-Placement-Assessment-Dataset-OPA
  • Download the OPA dataset. We show the file structure below:

    ├── background: 
         ├── category: 
                  ├── imgID.jpg
                  ├── ……
         ├── ……
    ├── foreground: 
         ├── category: 
                  ├── imgID.jpg
                  ├── mask_imgID.jpg
                  ├── ……
         ├── ……
    ├── composite: 
         ├── train_set: 
                  ├── fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── mask_fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── ……
         └── test_set: 
    ├── train_set.csv
    └── test_set.csv
    

    All backgrounds and foregrounds have their own IDs for identification. Each category of foregrounds and their compatible backgrounds are placed in one folder. The corresponding masks are placed in the same folder with a mask prefix.

    Four values are used to identify the location of a foreground in the background, including x y indicating the upper left corner of the foreground and w h indicating width and height. Scale is the maximum of fg_w/bg_w and fg_h/bg_h. The label (0 or 1) means whether the composite is reasonable in terms of the object placement.

    The training set and the test set each has a CSV file to record their information.

  • We also provide a script in /data_processing/ to generate composite images:

    python generate_composite.py
    

    After running the script, input the foreground ID, background ID, position, label, and storage path to generate your composite image.

Bibtex

If you find this work useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{liu2021OPA,
  title={OPA: Object Placement Assessment Dataset},
  author={Liu,Liu and Zhang,Bo and Li,Jiangtong and Niu,Li and Liu,Qingyang and Zhang,Liqing},
  journal={arXiv preprint arXiv:2107.01889},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022