Learning to Prompt for Continual Learning

Overview

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation

L2P is a novel continual learning technique which learns to dynamically prompt a pre-trained model to learn tasks sequentially under different task transitions. Different from mainstream rehearsal-based or architecture-based methods, L2P requires neither a rehearsal buffer nor test-time task identity. L2P can be generalized to various continual learning settings including the most challenging and realistic task-agnostic setting. L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer.

Code is written by Zifeng Wang. Acknowledgement to https://github.com/google-research/nested-transformer.

This is not an officially supported Google product.

Enviroment setup

pip install -r requirements.txt

Getting pretrained ViT model

ViT-B/16 model used in this paper can be downloaded at here.

Instructions on running L2P

We provide the configuration file to train and evaluate L2P on multiple benchmarks in configs.

To run our method on the Split CIFAR-100 dataset (class-incremental setting):

python -m main.py --my_config configs/cifar100_l2p.py --workdir=./cifar100_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

To run our method on the more complex Gaussian Scheduled CIFAR-100 dataset (task-agnostic setting):

python -m main.py --my_config configs/cifar100_gaussian_l2p.py --workdir=./cifar100_gaussian_l2p --my_config.init_checkpoint=<ViT-saved-path/ViT-B_16.npz>

Note: we run our experiments using 8 V100 GPUs or 4 TPUs, and we specify a per device batch size of 16 in the config files. This indicates that we use a total batch size of 128.

Visualize results

We use tensorboard to visualize the result. For example, if the working directory specified to run L2P is workdir=./cifar100_l2p, the command to check result is as follows:

tensorboard --logdir ./cifar100_l2p

Here are the important metrics to keep track of, and their corresponding meanings:

Metric Description
accuracy_n Accuracy of the n-th task
forgetting Average forgetting up until the current task
avg_acc Average evaluation accuracy up until the current task

Cite

@inproceedings{wang2021learning,
  title={Learning to Prompt for Continual Learning},
  author={Zifeng Wang and Zizhao Zhang and Chen-Yu Lee and Han Zhang and Ruoxi Sun and Xiaoqi Ren and Guolong Su and Vincent Perot and Jennifer Dy and Tomas Pfister},
  booktitle={arXiv preprint arXiv:2112.08654},
  year={2021}
}
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
2 Jul 19, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022