Tensorflow AffordanceNet and AffContext implementations

Overview

AffordanceNet and AffContext

This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3.

The main objective of both architectures is to identify action affordances, so that they can be used in real robotic applications to understand the diverse objects present in the environment.

Both models have been trained on IIT-AFF and UMD datasets.

Detections on novel image

Novel image

Example of ground truth affordances compared with the affordance detection results by AffordanceNet and AffContext on the IIT-AFF dataset.

IIT results

IIT colours

Example of ground truth affordances compared with the affordance detection results by AffordanceNet and AffContext on the UMD dataset.

UMD results

UMD colours

AffordanceNet simultaneously detects multiple objects with their corresponding classes and affordances. This network mainly consists of two branches: an object detection branch to localise and classify the objects in the image, and an affordance detection branch to predict the most probable affordance label for each pixel in the object.

AffordanceNet

AffContext correctly predicts the pixel-wise affordances independently of the class of the object, which allows to infer the affordances for unseen objects. The structure of this network is similar to AffordanceNet, but the object detection branch only performs binary classification into foreground and background areas, and it includes two new blocks: an auxiliary task to infer the affordances in the region and a self-attention mechanism to capture rich contextual dependencies through the region.

AffContext

Results

The results of the tensorflow implementation are contrasted with the values provided in the papers from AffordanceNet and AffContext. However, since the procedure of how the results are processed to obtain the final metrics in both networks may be different, the results are also compared with the values obtained by running the original trained models, but processing the outputs and calculating the measures with the code from this repository. These results are denoted with * in the comparison tables.

Affordances AffordanceNet
(Caffe)
AffordanceNet* AffordanceNet
(tf)
contain 79.61 73.68 74.17
cut 75.68 64.71 66.97
display 77.81 82.81 81.84
engine 77.50 81.09 82.63
grasp 68.48 64.13 65.49
hit 70.75 82.13 83.25
pound 69.57 65.90 65.73
support 69.57 74.43 75.26
w-grasp 70.98 77.63 78.45
Average 73.35 74.06 74.87
Affordances AffContext
(Caffe)
AffContext* AffContext
(tf)
grasp 0.60 0.51 0.55
cut 0.37 0.31 0.26
scoop 0.60 0.52 0.52
contain 0.61 0.55 0.57
pound 0.80 0.68 0.64
support 0.88 0.69 0.21
w-grasp 0.94 0.88 0.85
Average 0.69 0.59 0.51

Setup guide

Requirements

  • Python 3
  • CUDA 10.1

Installation

  1. Clone the repository into your $AffordanceNet_ROOT folder.

  2. Install the required Python3 packages with: pip3 install -r requirements.txt

Testing

  1. Download the pretrained weights:

    • AffordanceNet weights trained on IIT-AFF dataset.
    • AffContext weights trained on UMD dataset.
  2. Extract the file into $AffordanceNet_ROOT/weights folder.

  3. Visualize results for AffordanceNet trained on IIT-AFF dataset:

python3 affordancenet_predictor.py --config_file config_iit_test
  1. Visualize results for AffContext trained on UMD dataset:
python3 affcontext_predictor.py --config_file config_umd_test

Training

  1. Download the IIT-AFF or UMD datasets in Pascal-VOC format following the instructions in AffordanceNet (IIT-AFF) and AffContext(UMD).

  2. Extract them into the $AffordanceNet_ROOT/data folder and make sure to have the following folder structure for IIT-AFF dataset:

    • cache/
    • VOCdevkit2012/

The same applies for UMD dataset, but folder names should be cache_UMD and VOCdevkit2012_UMD

  1. Run the command to train AffordanceNet on IIT-AFF dataset:
python3 affordancenet_trainer.py --config_file config_iit_train
  1. Run the command to train AffContext on UMD dataset:
python3 affcontext_trainer.py --config_file config_umd_train

Acknowledgements

This repo used source code from AffordanceNet and Faster-RCNN

Owner
Beatriz Pérez
MSc student in Computer Science at Universität Bonn, Germany. Computer Engineer from Universidad de Zaragoza, Spain.
Beatriz Pérez
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022