A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Overview

ClusterGCN

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Abstract

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy -- using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71.

This repository provides a PyTorch implementation of ClusterGCN as described in the paper:

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh. KDD, 2019. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           1.11
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
scipy              1.1.0
argparse           1.1.0
torch              0.4.1
torch-geometric    0.3.1
metis              0.2a.4
scikit-learn       0.20
torch_spline_conv  1.0.4
torch_sparse       0.2.2
torch_scatter      1.0.4
torch_cluster      1.1.5

Installing metis on Ubuntu:

sudo apt-get install libmetis-dev

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Pubmed` is included in the `input/` directory. In addition to the edgelist there is a csv file with the sparse features and another one with the target variable.

The **feature matrix** is a sparse one and it is stored as a csv. Features are indexed from 0 consecutively. The feature matrix csv is structured as:

NODE ID FEATURE ID Value
0 3 0.2
0 7 0.5
1 17 0.8
1 4 5.4
1 38 1.3
... ... ...
n 3 0.9

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

The training of a ClusterGCN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/edges.csv`.
  --features-path   STR    Features csv.         Default is `input/features.csv`.
  --target-path     STR    Target classes csv.    Default is `input/target.csv`.

Model options

  --clustering-method   STR     Clustering method.             Default is `metis`.
  --cluster-number      INT     Number of clusters.            Default is 10. 
  --seed                INT     Random seed.                   Default is 42.
  --epochs              INT     Number of training epochs.     Default is 200.
  --test-ratio          FLOAT   Training set ratio.            Default is 0.9.
  --learning-rate       FLOAT   Adam learning rate.            Default is 0.01.
  --dropout             FLOAT   Dropout rate value.            Default is 0.5.
  --layers              LST     Layer sizes.                   Default is [16, 16, 16]. 

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a ClusterGCN model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with a different layer structure:

$ python src/main.py --layers 64 64

Training a random clustered model:

$ python src/main.py --clustering-method random

License

Comments
  • Segmentation fault While running main.py on Ubuntu

    Segmentation fault While running main.py on Ubuntu

    while i am running main.py i am getting the segmentation fault error on Ubuntu.

    python3 main.py --epochs 100

    +-------------------+----------------------------------------------------------+ | Parameter | Value | +===================+==========================================================+ | Cluster number | 10 | +-------------------+----------------------------------------------------------+ | Clustering method | metis | +-------------------+----------------------------------------------------------+ | Dropout | 0.500 | +-------------------+----------------------------------------------------------+ | Edge path | /home/User/Desktop/ClusterGCN-master/input/edges.csv | +-------------------+----------------------------------------------------------+ | Epochs | 100 | +-------------------+----------------------------------------------------------+ | Features path | /home/User/Desktop/ClusterGCN- | | | master/input/features.csv | +-------------------+----------------------------------------------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------------------------------------------+ | Learning rate | 0.010 | +-------------------+----------------------------------------------------------+ | Seed | 42 | +-------------------+----------------------------------------------------------+ | Target path | /home/User/Desktop/ClusterGCN- | | | master/input//target.csv | +-------------------+----------------------------------------------------------+ | Test ratio | 0.900 | +-------------------+----------------------------------------------------------+

    Metis graph clustering started.

    Segmentation fault

    opened by alamsaqib 4
  • ImportError: No module named 'torch_spline_conv'

    ImportError: No module named 'torch_spline_conv'

    I followed the instructions of installation properly, however, error above occurred.

    After checking the site packages folder, i do not find the file torch_spline_conv. I will google around for finding out why that is happening, but thought you might have some insights

    Any help is appreciated.

    The complete trace is as follows

    File "src/main.py", line 4, in <module>
        from clustergcn import ClusterGCNTrainer
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/clustergcn.py", line 5, in <module>
        from layers import StackedGCN
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/layers.py", line 2, in <module>
        from torch_geometric.nn import GCNConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/__init__.py", line 1, in <module>
        from .conv import *  # noqa
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/__init__.py", line 1, in <module>
        from .spline_conv import SplineConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/spline_conv.py", line 3, in <module>
        from torch_spline_conv import SplineConv as Conv
    ImportError: No module named 'torch_spline_conv'
    
    
    opened by 1byxero 2
  • For ppi

    For ppi

    Hello. Thanks for your work and code. It's great that Cluster-GCN achieves great performance in PPI datasets. But it seems that you have not opened source the code for PPI node classification.

    Do you find the best model on validation dataset at first then test on the unseen test dataset? I notice that GraphStar now is the SOTA. However, they don't use the validation dataset and directly find the best model on test dataset.

    Can you share code of PPI with us and mention how to split dataset in the readme file? It's important for others to follow your great job.

    opened by guochengqian 2
  • Metis hits a Segmentation fault when running _METIS_PartGraphKway

    Metis hits a Segmentation fault when running _METIS_PartGraphKway

    • I'm using the default test input files.

    • I've attached pdb screenshot during the run.

    • Environment: Ubuntu 18.04 Anaconda (Python 3.7.3),
      torch-geometric==1.3.0 torch-scatter==1.3.0 torch-sparse==0.4.0 torch-spline-conv==1.1.0 metis==0.2a.4

    PDB Error Screenshot from 2019-07-04 13-56-16

    Requirements.txt Screenshot from 2019-07-04 14-02-14

    opened by poppingtonic 2
  • The error of metis, Segmentation fault (core dumped)

    The error of metis, Segmentation fault (core dumped)

    I found that I can use the random model to divide the graph, but when using Metis, the code will terminate abnormally. I want to ask what causes this. I change "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '32')" in metis.py (line 31) to "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '64')", but it doesn't work!!!

    python src/main.py +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 200 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Segmentation fault (core dumped)

    opened by yiyang-wang 1
  • TypeError: object of type 'int' has no len()

    TypeError: object of type 'int' has no len()

    hello, when I run main.py, I found the error message: File "D:\anaconda3.4\lib\site-packages\pymetis_init_.py", line 44, in _prepare_graph for i in range(len(adjacency)): TypeError: object of type 'int' has no len()

    I have installed pymetis package to solve the metis.dll, this error occurs in the pymetis_init_.py. do you know how to solve it?

    opened by tanjia123456 1
  • RuntimeError: Could not locate METIS dll.

    RuntimeError: Could not locate METIS dll.

    hello,when I run main.py, the error massage appears:

    raise RuntimeError('Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.') RuntimeError: Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.

    do you know how to solve it?

    opened by tanjia123456 1
  • Runtime error about metis

    Runtime error about metis

    At the train begining that part the full graph, the function "metis.part_graph(self.graph, self.args.cluster_number)" throws an error: Traceback (most recent call last): File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 30, in <module> main() File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 19, in main clustering_machine.decompose() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 38, in decompose self.metis_clustering() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 800, in part_graph _METIS_PartGraphKway(*args) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 677, in _METIS_PartGraphKway adjwgt, nparts, tpwgts, ubvec, options, objval, part) OSError: exception: access violation writing 0x000001B0B9C0E000

    But I tried test package metis as follow, It works: ` import metis from networkx import karate_club_graph

    zkc = karate_club_graph() graph_clustering=metis.part_graph(zkc) ` So, what happend?

    opened by ByskyXie 1
  • some question about code

    some question about code

    It seems like your code didn't consider the connection between clusters,and normalization that are mentioned in paper ,will you add these two options?

    opened by thunderbird0902 1
  • About installation

    About installation

    Hi there: Thank you for your great work, I've finally got the code running. To make the installation in README.md more precise & complete. You may want to add the following dependancies:

    • torch_spline_conv == 1.0.4
    • torch_sparse == 0.2.2
    • torch_scatter == 1.0.4
    • torch_cluster == 1.1.5 (strict)
    opened by dkdk-ddk 1
  • Cannot run main.py

    Cannot run main.py

    src/main.py --epochs 100 +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 100 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Traceback (most recent call last): File "src/main.py", line 24, in main() File "src/main.py", line 18, in main clustering_machine.decompose() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 38, in decompose self.metis_clustering() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "/usr/local/lib/python3.7/site-packages/metis.py", line 765, in part_graph graph = networkx_to_metis(graph) File "/usr/local/lib/python3.7/site-packages/metis.py", line 574, in networkx_to_metis for i in H.node: AttributeError: 'Graph' object has no attribute 'node'

    opened by linkerlin 1
  • issues about the metis algorithm

    issues about the metis algorithm

    (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) Thanks for your awesome code, could you please tell me how metis conduct the graph partition? Cause the self.graph here doesn't include the information about edge weights and feature attributes.

    opened by immortal13 2
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022