Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

Overview

FAC-Net

Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization
Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng Li (CUHK)

Paper: arXiv, ICCV

Overview

We argue that existing methods for weakly-supervised temporal activity localization cannot guarantee the foreground-action consistency, that is, the foreground and actions are mutually inclusive. Therefore, we propose a novel method named Foreground-Action Consistency Network (FAC-Net) to address this issue. The experimental results on THUMOS14 are as below.

Method \ mAP(%) @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 AVG
UntrimmedNet 44.4 37.7 28.2 21.1 13.7 - - -
STPN 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
W-TALC 55.2 49.6 40.1 31.1 22.8 - 7.6 -
AutoLoc - - 35.8 29.0 21.2 13.4 5.8 -
CleanNet - - 37.0 30.9 23.9 13.9 7.1 -
MAAN 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
CMCS 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
BM 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
RPN 62.3 57.0 48.2 37.2 27.9 16.7 8.1 36.8
DGAM 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0
TSCN 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
EM-MIL 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
BaS-Net 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3
A2CL-PT 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
ACM-BANet 64.6 57.7 48.9 40.9 32.3 21.9 13.5 39.9
HAM-Net 65.4 59.0 50.3 41.1 31.0 20.7 11.1 39.8
UM 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
FAC-Net (Ours) 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.2
  • Tensorboard Logger
  • CUDA 10.0

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We recommend using features and annotations provided by this repo.
  2. Place the features and annotations inside a dataset/Thumos14reduced/ folder.

Usage

Training

You can easily train the model by running the provided script.

  • Refer to train_options.py. Modify the argument of dataset-root to the path of your dataset folder.

  • Run the command below.

$ python train_main.py --run-type 0 --model-id 1   # rgb stream
$ python train_main.py --run-type 1 --model-id 2   # flow stream

Make sure you use different model-id for RGB and optical flow. Models are saved in ./ckpt/dataset_name/model_id/

Evaulation

The trained model can be found here. Please change the file name to xxx.pkl (e.g., 100.pkl) and put it into ./ckpt/dataset_name/model_id/. You can evaluate the model referring to the two stream evaluation process.

Single stream evaluation

  • Run the command below.
$ python train_main.py --pretrained --run-type 2 --model-id 1 --load-epoch 100  # rgb stream
$ python train_main.py --pretrained --run-type 3 --model-id 2 --load-epoch 100  # flow stream

load-epoch refers to the epoch of the best model. The best model would not always occur at 100 epoch, please refer to the log in the same folder of saved models to set the load epoch of the best model. Make sure you set the right model-id that corresponds to the model-id during training.

Two stream evaluation

  • Run the command below using our provided models.
$ python test_main.py --rgb-model-id 1 --flow-model-id 2 --rgb-load-epoch 100 --flow-load-epoch 100

References

We referenced the repos below for the code.

If you find this code useful, please cite our paper.

@InProceedings{Huang_2021_ICCV,
    author    = {Huang, Linjiang and Wang, Liang and Li, Hongsheng},
    title     = {Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8002-8011}
}

Contact

If you have any question or comment, please contact the first author of the paper - Linjiang Huang ([email protected]).

Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023