Sequence model architectures from scratch in PyTorch

Overview

Sequence Models

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.

Table of Contents

Setup

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda create --name --file requirements.txt
  3. conda activate

Usage

Global configuration for training/inference is found in src/config.py. To train a model customize the configuration by selecting everything from the model (For the list of available models see src/model_dispatcher.py) to learning rate and run:

python src/train.py

Training saves the model in runs/ along with the preprocessor/tokenizer and logs. For loss and metric visualizations enable wandb experiment tracking.

To interact with a model make sure the model was trained beforehand. By keeping the same configuration you can then run:

python src/interact.py

Implementations

RNN

Implementation of the vanilla Recurrent Neural Network is available in src/models/rnn.py. This is the most basic RNN which is defined with the RNN Cell pictured below ( Credit for the visualization belongs to deeplearning.ai). This cell is being applied to every timestep of a sequence, producing an output and a hidden state that gets fed back to it in the next timestep. These cells are often represented in a chain (unrolled representation), but one must remember that every link of that chain represents the same RNN Cell, in other words, the weights are the same. This forces the RNN cell to learn to be able to handle any timestep/position in a sequence. Some of the key points in which RNNs differ compared to FFNNs are:

  • Concept of time is resembled in the architecture
  • Inputs can be of arbitrary lengths
  • Network keeps memory of past samples/batches

For more details see my post on the RNN.

LSTM

Implementation of the Long-Short Term Memory is available in src/models/lstm.py. LSTM was designed to handle common problems of RNN's which included vanishing gradients and memory limitations. This was accomplished with an additional hidden state called the cell state (long term memory) and so-called gates which guard it and act as memory management. Gradient problem was mitigated with this because, as seen in the visualization below (Credit for the visualization belongs to deeplearning.ai), the cell state doesn't pass through any linear layers. Cell state is influenced only through addition or element-wise multiplication with the output of gates. Gates and their short roles:

  • Forget gate: what information to keep and what to forget in the long memory
  • Input gate: what information needs to be updated in the long memory
  • Cell gate: how the information will be updated in the long memory
  • Output gate: what part of the long memory is relevant for the short memory

For more details view my post on the LSTM.

Original Paper: Long Thort-Term Memory

GRU

Implementation of the Gated Recurrent Unit is available in src/models/gru.py. GRU loses the cell state compared to the LSTM and has a simpler structure. Below is the architecture of a GRU cell. For a more detailed comparison, one might take a look at Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. GRU cell architecture is presented below (Credit for the visualization belongs to deeplearning.ai).

Original Paper: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Sentiment Classifier

Implementation of a Sentiment Classifier is available in src/models/sentiment_clf.py. Dataset used for training is the IMDb dataset of positive and negative movie reviews available in data/imdb.csv.

Datapoint examples:

This movie is terrible but it has some good effects. , negative
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='imdb'
MODEL='rnnsentimentclf'
LOSS='BCEWithLogitsLoss'
LR=1e-3
OPTIMIZER='Adam'

A sentiment classifier is a model that takes as input a sentence and outputs its sentiment. There are many ways in which a sentiment classifier can be built. In this simple implementation, an embedding layer is used first as a learnable way to encode tokens into vectors. After that, an RNN (custom one is used but it can easily be swapped with the PyTorch one) is applied which produces output vectors across timesteps. Average pooling and max pooling is then applied to those vectors (shown to perform better than taking only the last output vector). Concatenated output from 2 pooling stages is fed through a linear layer and sigmoid to decide on the probability of positive sentiment.

Language Model

Implementation of a Language Model is available in src/models/language_model.py. Dataset used for training is the human numbers dataset introduced by fast.ai. It features a letter representation of the first 10,000 numbers written in English. It is a very simple benchmark for language models.

Datapoint examples:

one 
two 
three 
four 
five 
six 
seven 
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='human_numbers'
MODEL='rnnlanguagemodel'
LOSS='CrossEntropyLoss'
LR=1e-3
OPTIMIZER='Adam'

Language model's task is to predict the next word in a sequence. This simple implementation features an embedding layer followed by an RNN (custom one is used but it can easily be swapped with the PyTorch one). The output of the RNN goes through a linear layer which maps to a vector whose length is the same as the vocabulary size. The same vector then goes through softmax which normalizes the vector to resemble probabilities of each word in our vocabulary being the next word.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021seqmodels,
  author = {Koch, Brando},
  title = {seq-models},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022