Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Overview

Adaptive Task-Relational Context (ATRC)

This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense Prediction. The code is organized using PyTorch Lightning.

Overview

ATRC is an attention-driven module to refine task-specific dense predictions by capturing cross-task contexts. Through Neural Architecture Search (NAS), ATRC selects contexts for multi-modal distillation based on the source-target tasks' relation. We investigate four context types: global, local, t-label and s-label (as well as the option to sever the cross-task connection). In the figure above, each CP block handles one source-target task connection.

We provide code for searching ATRC configurations and training various multi-modal distillation networks on the NYUD-v2 and PASCAL-Context benchmarks, based on HRNet backbones.

Usage

Requirements

The code is run in a conda environment with Python 3.8.11:

conda install pytorch==1.7.0 torchvision==0.8.1 cudatoolkit=10.1 -c pytorch
conda install pytorch-lightning==1.1.8 -c conda-forge
conda install opencv==4.4.0 -c conda-forge
conda install scikit-image==0.17.2
pip install jsonargparse[signatures]==3.17.0

NOTE: PyTorch Lightning is still going through heavy development, so make sure version 1.1.8 is used with this code to avoid issues.

Download the Data

Before running the code, download and extract the datasets to any directory $DATA_DIR:

wget https://data.vision.ee.ethz.ch/brdavid/atrc/NYUDv2.tar.gz -P $DATA_DIR
wget https://data.vision.ee.ethz.ch/brdavid/atrc/PASCALContext.tar.gz -P $DATA_DIR
tar xfvz $DATA_DIR/NYUDv2.tar.gz -C $DATA_DIR && rm $DATA_DIR/NYUDv2.tar.gz
tar xfvz $DATA_DIR/PASCALContext.tar.gz -C $DATA_DIR && rm $DATA_DIR/PASCALContext.tar.gz

ATRC Search

To start an ATRC search on NYUD-v2 with a HRNetV2-W18-small backbone, use for example:

python ./src/main_search.py --cfg ./config/nyud/hrnet18/atrc_search.yaml --datamodule.data_dir $DATA_DIR --trainer.gpus 2 --trainer.accelerator ddp

The path to the data directory $DATA_DIR needs to be provided. With every validation epoch, the current ATRC configuration is saved as a atrc_genotype.json file in the log directory.

Multi-Modal Distillation Network Training

To train ATRC distillation networks supply the path to the corresponding atrc_genotype.json, e.g., $GENOTYPE_DIR:

python ./src/main.py --cfg ./config/nyud/hrnet18/atrc.yaml --model.atrc_genotype_path $GENOTYPE_DIR/atrc_genotype.json --datamodule.data_dir $DATA_DIR --trainer.gpus 1

Some genotype files can be found under genotypes/.

Baselines can be run by selecting the config file, e.g., multi-task learning baseline:

python ./src/main.py --cfg ./config/nyud/hrnet18/baselinemt.yaml --datamodule.data_dir $DATA_DIR --trainer.gpus 1

The evaluation of boundary detection is disabled, since the MATLAB-based SEISM repository was used for obtaining the optimal dataset F-measure scores. Instead, the boundary predictions are simply saved on the disk in this code.

Citation

If you find this code useful in your research, please consider citing the paper:

@InProceedings{bruggemann2020exploring,
  Title     = {Exploring Relational Context for Multi-Task Dense Prediction},
  Author    = {Bruggemann, David and Kanakis, Menelaos and Obukhov, Anton and Georgoulis, Stamatios and Van Gool, Luc},
  Booktitle = {ICCV},
  Year      = {2021}
}

Credit

The pretrained backbone weights and code are from MMSegmentation. The distilled surface normal and saliency labels for PASCAL-Context are from ASTMT. Local attention CUDA kernels are from this repo.

Contact

For questions about the code or paper, feel free to contact me (send email).

Owner
David Brüggemann
PhD student at Computer Vision Lab, ETH Zurich
David Brüggemann
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022