Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Overview

Adaptive Task-Relational Context (ATRC)

This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense Prediction. The code is organized using PyTorch Lightning.

Overview

ATRC is an attention-driven module to refine task-specific dense predictions by capturing cross-task contexts. Through Neural Architecture Search (NAS), ATRC selects contexts for multi-modal distillation based on the source-target tasks' relation. We investigate four context types: global, local, t-label and s-label (as well as the option to sever the cross-task connection). In the figure above, each CP block handles one source-target task connection.

We provide code for searching ATRC configurations and training various multi-modal distillation networks on the NYUD-v2 and PASCAL-Context benchmarks, based on HRNet backbones.

Usage

Requirements

The code is run in a conda environment with Python 3.8.11:

conda install pytorch==1.7.0 torchvision==0.8.1 cudatoolkit=10.1 -c pytorch
conda install pytorch-lightning==1.1.8 -c conda-forge
conda install opencv==4.4.0 -c conda-forge
conda install scikit-image==0.17.2
pip install jsonargparse[signatures]==3.17.0

NOTE: PyTorch Lightning is still going through heavy development, so make sure version 1.1.8 is used with this code to avoid issues.

Download the Data

Before running the code, download and extract the datasets to any directory $DATA_DIR:

wget https://data.vision.ee.ethz.ch/brdavid/atrc/NYUDv2.tar.gz -P $DATA_DIR
wget https://data.vision.ee.ethz.ch/brdavid/atrc/PASCALContext.tar.gz -P $DATA_DIR
tar xfvz $DATA_DIR/NYUDv2.tar.gz -C $DATA_DIR && rm $DATA_DIR/NYUDv2.tar.gz
tar xfvz $DATA_DIR/PASCALContext.tar.gz -C $DATA_DIR && rm $DATA_DIR/PASCALContext.tar.gz

ATRC Search

To start an ATRC search on NYUD-v2 with a HRNetV2-W18-small backbone, use for example:

python ./src/main_search.py --cfg ./config/nyud/hrnet18/atrc_search.yaml --datamodule.data_dir $DATA_DIR --trainer.gpus 2 --trainer.accelerator ddp

The path to the data directory $DATA_DIR needs to be provided. With every validation epoch, the current ATRC configuration is saved as a atrc_genotype.json file in the log directory.

Multi-Modal Distillation Network Training

To train ATRC distillation networks supply the path to the corresponding atrc_genotype.json, e.g., $GENOTYPE_DIR:

python ./src/main.py --cfg ./config/nyud/hrnet18/atrc.yaml --model.atrc_genotype_path $GENOTYPE_DIR/atrc_genotype.json --datamodule.data_dir $DATA_DIR --trainer.gpus 1

Some genotype files can be found under genotypes/.

Baselines can be run by selecting the config file, e.g., multi-task learning baseline:

python ./src/main.py --cfg ./config/nyud/hrnet18/baselinemt.yaml --datamodule.data_dir $DATA_DIR --trainer.gpus 1

The evaluation of boundary detection is disabled, since the MATLAB-based SEISM repository was used for obtaining the optimal dataset F-measure scores. Instead, the boundary predictions are simply saved on the disk in this code.

Citation

If you find this code useful in your research, please consider citing the paper:

@InProceedings{bruggemann2020exploring,
  Title     = {Exploring Relational Context for Multi-Task Dense Prediction},
  Author    = {Bruggemann, David and Kanakis, Menelaos and Obukhov, Anton and Georgoulis, Stamatios and Van Gool, Luc},
  Booktitle = {ICCV},
  Year      = {2021}
}

Credit

The pretrained backbone weights and code are from MMSegmentation. The distilled surface normal and saliency labels for PASCAL-Context are from ASTMT. Local attention CUDA kernels are from this repo.

Contact

For questions about the code or paper, feel free to contact me (send email).

Owner
David Brüggemann
PhD student at Computer Vision Lab, ETH Zurich
David Brüggemann
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022