An implementation of a discriminant function over a normal distribution to help classify datasets.

Overview

CS4044D Machine Learning Assignment 1

By Dev Sony, B180297CS

The question, report and source code can be found here.

Github Repo

Solution 1

Based on the formula given: Formula

The function has been defined:

def discriminant_function(x, mean, cov, d, P):
    if d == 1:
        output = -0.5*(x - mean) * (1/cov)
        output = output * (x - mean)
        output += -0.5*d*log(2*pi) - 0.5*log(cov) 

    else: 
        output = np.matmul(-0.5*(x - mean), np.linalg.inv(cov))
        output = np.matmul(output, (x - mean).T)
        output += -0.5*d*log(2*pi) - 0.5*log(np.linalg.det(cov)) 

    # Adding Prior Probability
    output += log(P)

    return output

It also accomdatees the case if only one feature is used, thus using only scalar quantities.

The variables can be configured based on the scenario. Here, it's assumed that prior probabilities are equally distributed and all features are taken:

n = len(data)
P = [1/n for i in range(n)]
d = len(data[0][0])

The input is the sample dataset, each set separated by the class they belong to as given below:

data = [
    # W1
    np.array([
        [-5.01, -8.12, -3.68],
        [-5.43, -3.48, -3.54],
        [1.08, -5.52, 1.66],
        [0.86, -3.78, -4.11],
        [-2.67, 0.63, 7.39],
        [4.94, 3.29, 2.08],
        [-2.51, 2.09, -2.59],
        [-2.25, -2.13, -6.94],
        [5.56, 2.86, -2.26],
        [1.03, -3.33, 4.33]
    ]),

    # W2
    np.array([
        [-0.91, -0.18, -0.05],
        [1.30, -2.06, -3.53],
        [-7.75, -4.54, -0.95],
        [-5.47, 0.50, 3.92],
        [6.14, 5.72, -4.85],
        [3.60, 1.26, 4.36],
        [5.37, -4.63, -3.65],
        [7.18, 1.46, -6.66],
        [-7.39, 1.17, 6.30],
        [-7.50, -6.32, -0.31]
    ]),

    # W3
    np.array([
        [5.35, 2.26, 8.13],
        [5.12, 3.22, -2.66],
        [-1.34, -5.31, -9.87],
        [4.48, 3.42, 5.19],
        [7.11, 2.39, 9.21],
        [7.17, 4.33, -0.98],
        [5.75, 3.97, 6.65],
        [0.77, 0.27, 2.41],
        [0.90, -0.43, -8.71],
        [3.52, -0.36, 6.43]
    ]) 
]

In order to classify the sample data, we first run the function through our sample dataset, classwise. On each sample, we find the class which gives the maximum output from its discriminant function.

A count and total count is maintained in order to find the success and failiure rates.

for j in range(n):
    print("\nData classes should be classified as:", j+1)
    total_count, count = 0, 0

    # Taking x as dataset belonging to class j + 1
    for x in data[j]:
        g_values = [0 for g in range(n)]        

        # Itering through each class' discriminant function
        for i in range(n):
            g_values[i] = discriminant_function(x, means[i], cov[i], d, P[i])

        # Now to output the maximum result 
        result = g_values.index(max(g_values)) + 1
        print(x, "\twas classified as", result)
        total_count, count = total_count + 1, (count + 1 if j == result - 1 else count)
        
    print("Success Rate:", (count/total_count)*100,"%")
    print("Fail Rate:", 100 - ((count/total_count))*100,"%")

Assuming that all classes have an equal prior probability (as per the configuration in the example picture), the following output is produced:

Output

Solution 2

Part (a) and (b)

In order to match the question, the configuration variables are altered.

  • data-1 for n indicates that only 2 classes will be considered (the final class would not be considered as its Prior probability is 0, implying that it wouldn't appear.)
  • We iterate through n + 1 in the outer loop as datasets of all 3 classes are being classified. (Althought class 3 is fully misclassified.)
  • The d value is changed to 1, indicating that only 1 feature will be used. (which is x1 )
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 1

The configuration parameters being passed are also changed.

  • x[0] indicates that only x1 will be used.
  • means[i][0] indiciates that we need the mean only for x1).
  • cov[i][0][0] indicates the variance of feature x1).
for j in range(n + 1):
    print("\nData classes should be classified as:", j+1)
    total_count, count = 0, 0

    # Taking x as dataset belonging to class j + 1
    for x in data[j]:
        g_values = [0 for g in range(n)]        # Array for all discrminant function outputs.

        # Itering through each class' discriminant function
        for i in range(n):
            g_values[i] = discriminant_function(x[0], means[i][0], cov[i][0][0], d, P[i])

        # Now to output the maximum result 
        result = g_values.index(max(g_values)) + 1
        print(x, "\twas classified as", result)
        total_count, count = total_count + 1, (count + 1 if j == result - 1 else count)
        
    print("Success Rate:", (count/total_count)*100,"%")
    print("Fail Rate:", 100 - ((count/total_count))*100,"%")

This results in the following output:

Output1

Part (c)

Here, the configuration parameters are changed slightly.

  • d is changed to 2, as now we are considering the first and second features.
  • The matrix paramateres passed now include necessary values for the same reason.
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 2

This results in the following output: Output2

Part (d)

Here again, the configurations are changed in a similiar fashion as in (c).

  • d values is changed to 3 as all three features are now considered.
  • The matrix paramaeteres are now passed without slicing as all values are important.
n = len(data) - 1
P = [0.5, 0.5, 0]
d = 3

The resuls in the following output:

Output2

Part (e)

On comparing the three outputs, using one or three features give more accurate results than using the first and second features.

Output3

The reason for this could be because the covariance with the third feature is much higher than the ones associated with the second feature.

Variance

Part (f)

In order to consider the possible configurations mentioned, the code takes an input vector and goes through all of them.

General Configuration values
n = len(data) - 1
P = [0.5, 0.5, 0]
g_values = [0 for i in range(n)]
Get input
x = list(map(float, input("Enter the input vector: ").strip().split()))
Case A
d = 1
print("Case A: Using only feature vector x1")
for i in range(n):
    g_values[i] = discriminant_function(x[0], means[i][0], cov[i][0][0], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)
Case B
d = 2
print("\nCase B: Using only feature vectors x1 and x2")
for i in range(n):
    g_values[i] = discriminant_function(x[0:2], means[i][0:2], cov[i][0:2, 0:2], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)
Case C
d = 3
print("\nCase C: Using all feature vectors")
for i in range(n):
    g_values[i] = discriminant_function(x, means[i], cov[i], d, P[i])

result = g_values.index(max(g_values)) + 1
print(x, "\twas classified as", result)

Here are the outputs for the 4 input vectors mentioned in the question: Output4

Owner
Dev Sony
I do stuff
Dev Sony
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022