Contrastive Learning Inverts the Data Generating Process

Overview

Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

3DIdent dataset example images

Experiments

To reproduce the disentanglement results for the MLP mixing, use the main_mlp.py script. For the experiments on KITTI Masks use the main_kitti.py script. For those on 3DIdent, use main_3dident.py.

MLP Mixing

> python main_mlp.py --help
usage: main_mlp.py
       [-h] [--sphere-r SPHERE_R] [--box-min BOX_MIN] [--box-max BOX_MAX]
       [--sphere-norm] [--box-norm] [--only-supervised] [--only-unsupervised]
       [--more-unsupervised MORE_UNSUPERVISED] [--save-dir SAVE_DIR]
       [--num-eval-batches NUM_EVAL_BATCHES] [--rej-mult REJ_MULT]
       [--seed SEED] [--act-fct ACT_FCT] [--c-param C_PARAM]
       [--m-param M_PARAM] [--tau TAU] [--n-mixing-layer N_MIXING_LAYER]
       [--n N] [--space-type {box,sphere,unbounded}] [--m-p M_P] [--c-p C_P]
       [--lr LR] [--p P] [--batch-size BATCH_SIZE] [--n-log-steps N_LOG_STEPS]
       [--n-steps N_STEPS] [--resume-training]

Disentanglement with InfoNCE/Contrastive Learning - MLP Mixing

optional arguments:
  -h, --help            show this help message and exit
  --sphere-r SPHERE_R
  --box-min BOX_MIN     For box normalization only. Minimal value of box.
  --box-max BOX_MAX     For box normalization only. Maximal value of box.
  --sphere-norm         Normalize output to a sphere.
  --box-norm            Normalize output to a box.
  --only-supervised     Only train supervised model.
  --only-unsupervised   Only train unsupervised model.
  --more-unsupervised MORE_UNSUPERVISED
                        How many more steps to do for unsupervised compared to
                        supervised training.
  --save-dir SAVE_DIR
  --num-eval-batches NUM_EVAL_BATCHES
                        Number of batches to average evaluation performance at
                        the end.
  --rej-mult REJ_MULT   Memory/CPU trade-off factor for rejection resampling.
  --seed SEED
  --act-fct ACT_FCT     Activation function in mixing network g.
  --c-param C_PARAM     Concentration parameter of the conditional
                        distribution.
  --m-param M_PARAM     Additional parameter for the marginal (only relevant
                        if it is not uniform).
  --tau TAU
  --n-mixing-layer N_MIXING_LAYER
                        Number of layers in nonlinear mixing network g.
  --n N                 Dimensionality of the latents.
  --space-type {box,sphere,unbounded}
  --m-p M_P             Type of ground-truth marginal distribution. p=0 means
                        uniform; all other p values correspond to (projected)
                        Lp Exponential
  --c-p C_P             Exponent of ground-truth Lp Exponential distribution.
  --lr LR
  --p P                 Exponent of the assumed model Lp Exponential
                        distribution.
  --batch-size BATCH_SIZE
  --n-log-steps N_LOG_STEPS
  --n-steps N_STEPS
  --resume-training

KITTI Masks

>python main_kitti.py --help
usage: main_kitti.py [-h] [--box-norm BOX_NORM] [--p P] [--experiment-dir EXPERIMENT_DIR] [--evaluate] [--specify SPECIFY] [--random-search] [--random-seeds] [--seed SEED] [--beta BETA] [--gamma GAMMA]
                     [--rate-prior RATE_PRIOR] [--data-distribution DATA_DISTRIBUTION] [--rate-data RATE_DATA] [--data-k DATA_K] [--betavae] [--search-beta] [--output-dir OUTPUT_DIR] [--log-dir LOG_DIR]
                     [--ckpt-dir CKPT_DIR] [--max-iter MAX_ITER] [--dataset DATASET] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--image-size IMAGE_SIZE] [--use-writer] [--z-dim Z_DIM] [--lr LR]
                     [--beta1 BETA1] [--beta2 BETA2] [--ckpt-name CKPT_NAME] [--log-step LOG_STEP] [--save-step SAVE_STEP] [--kitti-max-delta-t KITTI_MAX_DELTA_T] [--natural-discrete] [--verbose] [--cuda]
                     [--num_runs NUM_RUNS]

Disentanglement with InfoNCE/Contrastive Learning - KITTI Masks

optional arguments:
  -h, --help            show this help message and exit
  --box-norm BOX_NORM
  --p P
  --experiment-dir EXPERIMENT_DIR
                        specify path
  --evaluate            evaluate instead of train
  --specify SPECIFY     use argument to only compute a subset of metrics
  --random-search       whether to random search for params
  --random-seeds        whether to go over random seeds with UDR params
  --seed SEED           random seed
  --beta BETA           weight for kl to normal
  --gamma GAMMA         weight for kl to laplace
  --rate-prior RATE_PRIOR
                        rate (or inverse scale) for prior laplace (larger -> sparser).
  --data-distribution DATA_DISTRIBUTION
                        (laplace, uniform)
  --rate-data RATE_DATA
                        rate (or inverse scale) for data laplace (larger -> sparser). (-1 = rand).
  --data-k DATA_K       k for data uniform (-1 = rand).
  --betavae             whether to do standard betavae training (gamma=0)
  --search-beta         whether to do rand search over beta
  --output-dir OUTPUT_DIR
                        output directory
  --log-dir LOG_DIR     log directory
  --ckpt-dir CKPT_DIR   checkpoint directory
  --max-iter MAX_ITER   maximum training iteration
  --dataset DATASET     dataset name (dsprites, cars3d,smallnorb, shapes3d, mpi3d, kittimasks, natural
  --batch-size BATCH_SIZE
                        batch size
  --num-workers NUM_WORKERS
                        dataloader num_workers
  --image-size IMAGE_SIZE
                        image size. now only (64,64) is supported
  --use-writer          whether to use a log writer
  --z-dim Z_DIM         dimension of the representation z
  --lr LR               learning rate
  --beta1 BETA1         Adam optimizer beta1
  --beta2 BETA2         Adam optimizer beta2
  --ckpt-name CKPT_NAME
                        load previous checkpoint. insert checkpoint filename
  --log-step LOG_STEP   numer of iterations after which data is logged
  --save-step SAVE_STEP
                        number of iterations after which a checkpoint is saved
  --kitti-max-delta-t KITTI_MAX_DELTA_T
                        max t difference between frames sampled from kitti data loader.
  --natural-discrete    discretize natural sprites
  --verbose             for evaluation
  --cuda
  --num_runs NUM_RUNS   when searching over seeds, do 10

3DIdent

>python main_3dident.py --help
usage: main_3dident.py [-h] [--batch-size BATCH_SIZE] [--n-eval-samples N_EVAL_SAMPLES] [--lr LR] [--optimizer {adam,sgd}] [--iterations ITERATIONS]
                                                                   [--n-log-steps N_LOG_STEPS] [--load-model LOAD_MODEL] [--save-model SAVE_MODEL] [--save-every SAVE_EVERY] [--no-cuda] [--position-only]
                                                                   [--rotation-and-color-only] [--rotation-only] [--color-only] [--no-spotlight-position] [--no-spotlight-color] [--no-spotlight]
                                                                   [--non-periodic-rotation-and-color] [--dummy-mixing] [--identity-solution] [--identity-mixing-and-solution]
                                                                   [--approximate-dataset-nn-search] --offline-dataset OFFLINE_DATASET [--faiss-omp-threads FAISS_OMP_THREADS]
                                                                   [--box-constraint {None,fix,learnable}] [--sphere-constraint {None,fix,learnable}] [--workers WORKERS]
                                                                   [--mode {supervised,unsupervised,test}] [--supervised-loss {mse,r2}] [--unsupervised-loss {l1,l2,l3,vmf}]
                                                                   [--non-periodical-conditional {l1,l2,l3}] [--sigma SIGMA] [--encoder {rn18,rn50,rn101,rn151}]

Disentanglement with InfoNCE/Contrastive Learning - 3DIdent

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
  --n-eval-samples N_EVAL_SAMPLES
  --lr LR
  --optimizer {adam,sgd}
  --iterations ITERATIONS
                        How long to train the model
  --n-log-steps N_LOG_STEPS
                        How often to calculate scores and print them
  --load-model LOAD_MODEL
                        Path from where to load the model
  --save-model SAVE_MODEL
                        Path where to save the model
  --save-every SAVE_EVERY
                        After how many steps to save the model (will always be saved at the end)
  --no-cuda
  --position-only
  --rotation-and-color-only
  --rotation-only
  --color-only
  --no-spotlight-position
  --no-spotlight-color
  --no-spotlight
  --non-periodic-rotation-and-color
  --dummy-mixing
  --identity-solution
  --identity-mixing-and-solution
  --approximate-dataset-nn-search
  --offline-dataset OFFLINE_DATASET
  --faiss-omp-threads FAISS_OMP_THREADS
  --box-constraint {None,fix,learnable}
  --sphere-constraint {None,fix,learnable}
  --workers WORKERS     Number of workers to use (0=#cpus)
  --mode {supervised,unsupervised,test}
  --supervised-loss {mse,r2}
  --unsupervised-loss {l1,l2,l3,vmf}
  --non-periodical-conditional {l1,l2,l3}
  --sigma SIGMA         Sigma of the conditional distribution (for vMF: 1/kappa)
  --encoder {rn18,rn50,rn101,rn151}

3DIdent Dataset

We introduce 3Dident, a dataset with hallmarks of natural environments (shadows, different lighting conditions, 3D rotations, etc.). A preliminary version of the dataset is released along with our pre-print.

3DIdent dataset example images

You can access the dataset here. The training and test datasets consists of 250000 and 25000 samples, respectively. To load, you can use the ThreeDIdentDataset class defined in datasets/threedident_dataset.py.

BibTeX

If you find our analysis helpful, please cite our pre-print:

@article{zimmermann2021cl,
  author = {
    Zimmermann, Roland S. and
    Sharma, Yash and
    Schneider, Steffen and
    Bethge, Matthias and
    Brendel, Wieland
  },
  title = {
    Contrastive Learning Inverts the Data Generating Process
  },
  journal = {CoRR},
  volume = {abs/2102.08850},
  year = {2021},
}
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023