Boosted CVaR Classification (NeurIPS 2021)

Overview

Boosted CVaR Classification

Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar
NeurIPS 2021

Table of Contents

Quick Start

Before running the code, please install all the required packages in requirements.txt by running:

pip install -r requirements.txt

In the code, we solve linear programs with the MOSEK solver, which requires a license. You can acquire a free academic license from https://www.mosek.com/products/academic-licenses/. Please make sure that the license file is placed in the correct folder so that the solver could work.

Train

To train a set of base models with boosting, run the following shell command:

python train.py --dataset [DATASET] --data_root /path/to/dataset 
                --alg [ALGORITHM] --epochs [EPOCHS] --iters_per_epoch [ITERS]
                --scheduler [SCHEDULER] --warmup [WARMUP_EPOCHS] --seed [SEED]

Use the --download option to download the dataset if you are running for the first time. Use the --save_file option to save your training results into a .mat file. Set the training hyperparameters with --alpha, --beta and --eta.

For example, to train a set of base models on Cifar-10 with AdaLPBoost, use the following shell command:

python train.py --dataset cifar10 --data_root data --alg adalpboost 
                --eta 1.0 --epochs 100 --iters_per_epoch 5000
                --scheduler 2000,4000 --warmup 20 --seed 2021
                --save_file cifar10.mat

Evaluation

To evaluate the models trained with the above command, run:

python test.py --file cifar10.mat

Introduction

In this work, we study the CVaR classification problem, which requires a classifier to have low α-CVaR loss, i.e. low average loss over the worst α fraction of the samples in the dataset. While previous work showed that no deterministic model learning algorithm can achieve a lower α-CVaR loss than ERM, we address this issue by learning randomized models. Specifically we propose the Boosted CVaR Classification framework that learns ensemble models via Boosting. Our motivation comes from the direct relationship between the CVaR loss and the LPBoost objective. We implement two algorithms based on the framework: one uses LPBoost, and the other named AdaLPBoost uses AdaBoost to pick the sample weights and LPBoost to pick the model weights.

Algorithms

We implement three algorithms in algs.py:

Name Description
uniform All sample weight vectors are uniform distributions.
lpboost Regularized LPBoost (set --beta for regularization).
adalpboost α-AdaLPBoost.

train.py only trains the base models. After the base models are trained, use test.py to select the model weights by solving the dual LPBoost problem.

Parameters

All default training parameters can be found in config.py. For Regularized LPBoost we use β = 100 for all α. For AdaLPBoost we use η = 1.0.

Citation and Contact

To cite this work, please use the following BibTex entry:

@inproceedings{zhai2021boosted,
  author = {Zhai, Runtian and Dan, Chen and Suggala, Arun Sai and Kolter, Zico and Ravikumar, Pradeep},
  booktitle = {Advances in Neural Information Processing Systems},
  title = {Boosted CVaR Classification},
  volume = {34},
  year = {2021}
}

To contact us, please email to the following address: Runtian Zhai <[email protected]>

Owner
Runtian Zhai
2nd year PhD at CMU CSD.
Runtian Zhai
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023