Fully Convlutional Neural Networks for state-of-the-art time series classification

Overview

Deep Learning for Time Series Classification

As the simplest type of time series data, univariate time series provides a reasonably good starting point to study the temporal signals. The representation learning and classification research has found many potential application in the fields like finance, industry, and health care. Common similarity measures like Dynamic Time Warping (DTW) or the Euclidean Distance (ED) are decades old. Recent efforts on different feature engineering and distance measures designing give much higher accuracy on the UCR time series classification benchmarks (like BOSS [1],[2], PROP [3] and COTE [4]) but also let to the pitfalls of higher complexity and interpretability.

The exploition on the deep neural networks, especially convolutional neural networks (CNN) for end-to-end time series classification are also under active exploration like multi-channel CNN (MC-CNN) [5] and multi-scale CNN (MCNN) [6]. However, they still need heavy preprocessing and a large set of hyperparameters which would make the model complicated to deploy.

This repository contains three deep neural networks models (MLP, FCN and ResNet) for the pure end-to-end and interpretable time series analytics. These models provide a good baseline for both application for real-world data and future research in deep learning on time series.

Before Start

What is the best approach to classfiy time series? Very hard to say. From the experiments we did, COTE, BOSS are among the best and DL-based appraoch (FCN, ResNet or MCNN) show no significant difference with them. If you prefer white box model, try BOSS first. If you like end-to-end solution, use FCN or even MLP with dropout as your fisrt baseline (FCN also support a certain level of model interpretability as from CAM or grad-CAM).

However, the UCR time series is kind of the 'extremely ideal data'. In a more applicable scenario, highly skewed labels with very non-stationary dynamics and frequent distribution/concept drift occur everywhere. Hopefully we can address these more complex issue with a very neat and effective DL based framework to enable end-2-end solution with good model interpretability , and yeah, we are exactly working on it.

Network Structure

Network Structure Three deep neural network architectures are exploited to provide a fully comprehensive baseline.

Localize the Contributing Region with Class Activation Map

Another benefit of FCN and ResNet with the global average pooling layer is its natural extension, the class activation map (CAM) to interpret the class-specific region in the data [7]. CAM

We can see that the discriminative regions of the time series for the right classes are highlighted. We also highlight the differences in the CAMs for the different labels. The contributing regions for different categories are different. The CAM provides a natural way to find out the contributing region in the raw data for the specific labels. This enables classification-trained convolutional networks to learn to localize without any extra effort. Class activation maps also allow us to visualize the predicted class scores on any given time series, highlighting the discriminative subsequences detected by the convolutional networks. CAM also provide a way to find a possible explanation on how the convolutional networks work for the setting of classification.

Visualize the Filter/Weights

We adopt the Gramian Angular Summation Field (GASF) [8] to visualize the filters/weights in the neural networks. The weights from the second and the last layer in MLP are very similar with clear structures and very little degradation occurring. The weights in the first layer, generally, have the higher values than the following layers. Feature

Classification Results

This table provides the testing (not training) classification error rate on 85 UCR time series data sets. For more experimental settings please refer to our paper.

Please note that the 'best' row is not a reasonable peformance measure. The MPCE score is TODO.

MLP FCN ResNet PROP COTE 1NN-DTW 1NN-BOSS BOSS-VS
50words 0.288 0.321 0.273 0.180 0.191 0.310 0.301 0.367
Adiac 0.248 0.143 0.174 0.353 0.233 0.396 0.220 0.302
ArrowHead 0.177 0.120 0.183 0.103 / 0.337 0.143 0.171
Beef 0.167 0.25 0.233 0.367 0.133 0.367 0.200 0.267
BeetleFly 0.150 0.050 0.200 0.400 / 0.300 0.100 0.000
BirdChicken 0.200 0.050 0.100 0.350 / 0.250 0.000 0.100
Car 0.167 0.083 0.067 / / / / /
CBF 0.14 0 0.006 0.002 0.001 0.003 0 0.001
ChlorineCon 0.128 0.157 0.172 0.360 0.314 0.352 0.340 0.345
CinCECGTorso 0.158 0.187 0.229 0.062 0.064 0.349 0.125 0.130
Coffee 0 0 0 0 0 0 0 0.036
Computers 0.460 0.152 0.176 0.116 0.300 0.296 0.324
CricketX 0.431 0.185 0.179 0.203 0.154 0.246 0.259 0.346
CricketY 0.405 0.208 0.195 0.156 0.167 0.256 0.208 0.328
CricketZ 0.408 0.187 0.187 0.156 0.128 0.246 0.246 0.313
DiatomSizeR 0.036 0.07 0.069 0.059 0.082 0.033 0.046 0.036
DistalPhalanxOutlineAgeGroup 0.173 0.165 0.202 0.223 / 0.208 0.180 0.155
DistalPhalanxOutlineCorrect 0.190 0.188 0.180 0.232 / 0.232 0.208 0.282
DistalPhalanxTW 0.253 0.210 0.260 0.317 / 0.290 0.223 0.253
Earthquakes 0.208 0.199 0.214 0.281 / 0.258 0.186 0.193
ECG200 0.080 0.100 0.130 / / 0.230 0.130 0.180
ECG5000 0.065 0.059 0.069 0.350 / 0.250 0.056 0.110
ECGFiveDays 0.03 0.015 0.045 0.178 0 0.232 0.000 0.000
ElectricDevices 0.420 0.277 0.272 0.277 / 0.399 0.282 0.351
FaceAll 0.115 0.071 0.166 0.152 0.105 0.192 0.210 0.241
FaceFour 0.17 0.068 0.068 0.091 0.091 0.170 0 0.034
FacesUCR 0.185 0.052 0.042 0.063 0.057 0.095 0.042 0.103
fish 0.126 0.029 0.011 0.034 0.029 0.177 0.011 0.017
FordA 0.231 0.094 0.072 0.182 / 0.438 0.083 0.096
FordB 0.371 0.117 0.100 0.265 / 0.406 0.109 0.111
GunPoint 0.067 0 0.007 0.007 0.007 0.093 0 0
Ham 0.286 0.238 0.219 / / 0.533 0.343 0.286
HandOutlines 0.193 0.224 0.139 / / 0.202 0.130 0.152
Haptics 0.539 0.449 0.494 0.584 0.481 0.623 0.536 0.584
Herring 0.313 0.297 0.406 0.079 / 0.469 0.375 0.406
InlineSkate 0.649 0.589 0.635 0.567 0.551 0.616 0.511 0.573
InsectWingbeatSound 0.369 0.598 0.469 / / 0.645 0.479 0.430
ItalyPower 0.034 0.03 0.040 0.039 0.036 0.050 0.053 0.086
LargeKitchenAppliances 0.520 0.104 0.107 0.232 / 0.205 0.280 0.304
Lightning2 0.279 0.197 0.246 0.115 0.164 0.131 0.148 0.262
Lightning7 0.356 0.137 0.164 0.233 0.247 0.274 0.342 0.288
MALLAT 0.064 0.02 0.021 0.050 0.036 0.066 0.058 0.064
Meat 0.067 0.033 0.000 / / 0.067 0.100 0.167
MedicalImages 0.271 0.208 0.228 0.245 0.258 0.263 0.288 0.474
MiddlePhalanxOutlineAgeGroup 0.265 0.232 0.240 0.474 / 0.250 0.218 0.253
MiddlePhalanxOutlineCorrect 0.240 0.205 0.207 0.210 / 0.352 0.255 0.350
MiddlePhalanxTW 0.391 0.388 0.393 0.630 / 0.416 0.373 0.414
MoteStrain 0.131 0.05 0.105 0.114 0.085 0.165 0.073 0.115
NonInvThorax1 0.058 0.039 0.052 0.178 0.093 0.210 0.161 0.169
NonInvThorax2 0.057 0.045 0.049 0.112 0.073 0.135 0.101 0.118
OliveOil 0.60 0.167 0.133 0.133 0.100 0.167 0.100 0.133
OSULeaf 0.43 0.012 0.021 0.194 0.145 0.409 0.012 0.074
PhalangesOutlinesCorrect 0.170 0.174 0.175 / / 0.272 0.217 0.317
Phoneme 0.902 0.655 0.676 / / 0.772 0.733 0.825
Plane 0.019 0 0 / / / /
ProximalPhalanxOutlineAgeGroup 0.176 0.151 0.151 0.117 / 0.195 0.137 0.244
ProximalPhalanxOutlineCorrect 0.113 0.100 0.082 0.172 / 0.216 0.131 0.134
ProximalPhalanxTW 0.203 0.190 0.193 0.244 / 0.263 0.203 0.248
RefrigerationDevices 0.629 0.467 0.472 0.424 / 0.536 0.512 0.488
ScreenType 0.592 0.333 0.293 0.440 / 0.603 0.544 0.464
ShapeletSim 0.517 0.133 0.000 / / 0.350 0.044 0.022
ShapesAll 0.225 0.102 0.088 0.187 / 0.232 0.082 0.188
SmallKitchenAppliances 0.611 0.197 0.203 0.187 / 0.357 0.200 0.221
SonyAIBORobot 0.273 0.032 0.015 0.293 0.146 0.275 0.321 0.265
SonyAIBORobotII 0.161 0.038 0.038 0.124 0.076 0.169 0.098 0.188
StarLightCurves 0.043 0.033 0.025 0.079 0.031 0.093 0.021 0.096
Strawberry 0.033 0.031 0.042 / / 0.060 0.042 0.024
SwedishLeaf 0.107 0.034 0.042 0.085 0.046 0.208 0.072 0.141
Symbols 0.147 0.038 0.128 0.049 0.046 0.050 0.032 0.029
SyntheticControl 0.05 0.01 0.000 0.010 0.000 0.007 0.030 0.040
ToeSegmentation1 0.399 0.031 0.035 0.079 / 0.228 0.048 0.031
ToeSegmentation2 0.254 0.085 0.138 0.085 / 0.162 0.038 0.069
Trace 0.18 0 0 0.010 0.010 0 0 0
TwoLeadECG 0.147 0 0 0.067 0.015 0.096 0.016 0.001
TwoPatterns 0.114 0.103 0 0 0 0 0.004 0.015
UWaveGestureLibraryAll 0.046 0.174 0.132 0.199 0.196 0.272 0.241 0.270
UWaveX 0.232 0.246 0.213 0.283 0.267 0.366 0.313 0.364
UWaveY 0.297 0.275 0.332 0.290 0.265 0.342 0.312 0.336
UWaveZ 0.295 0.271 0.245 0.029 / 0.108 0.059 0.098
wafer 0.004 0.003 0.003 0.003 0.001 0.020 0.001 0.001
Wine 0.204 0.111 0.204 / / 0.426 0.167 0.296
WordSynonyms 0.406 0.42 0.368 0.226 / 0.252 0.345 0.491
Worms 0.657 0.331 0.381 / / 0.536 0.392 0.398
WormsTwoClass 0.403 0.271 0.265 / / 0.337 0.243 0.315
yoga 0.145 0.155 0.142 0.121 0.113 0.164 0.081 0.169
Best 6 27 21 14 10 4 21 9

Dependencies

Keras (Tensorflow backend), Numpy.

Cite

If you find either the codes or the results are helpful to your work, please kindly cite our paper

[Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline] (https://arxiv.org/abs/1611.06455)

[Imaging Time-Series to Improve Classification and Imputation] (https://arxiv.org/abs/1506.00327)

License

This project is licensed under the MIT License.

MIT License

Copyright (c) [2019] [Zhiguang Wang]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Stephen
Stephen
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022