Trainable Bilateral Filter Layer (PyTorch)

Overview

Trainable Bilateral Filter Layer (PyTorch)

This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range filter dimension) that can be directly included in any Pytorch graph, just as any conventional layer (FCL, CNN, ...). By calculating the analytical derivative of the bilateral filter with respect to its parameters and its input, the (so far) hyperparameters can be automatically optimized via backpropagation for a calculated loss.

Our corresponding paper Ultra low-parameter denoising: Trainable bilateral filter layers in computed tomography can be found on arXiv.

Implementation:

The general structure of the implementation follows the PyTorch documentation for creating custom C++ and CUDA extensions. The forward pass implementation of the layer is based on code from the Project MONAI framework, originally published under the Apache License, Version 2.0. The correct implementation of the analytical forward and backward pass can be verified by running the gradcheck.py script, comparing numerical gradients with the derived analytical gradient using the PyTorch built-in gradcheck function.

Setup:

The C++/CUDA implemented forward and backward functions are compiled via the setup.py script using setuptools:

  1. Create and activate a python environment (python>=3.7).
  2. Install Torch (tested versions: 1.7.1, 1.9.0).
  3. Navigate into the extracted repo.
  4. Compile/install the bilateral filter layer by calling
python setup.py install

Example scripts:

  • Try out the forward pass by running the example_filter.py (requires Matplotlib and scikit-image).
  • Run the gradcheck.py script to verify the correct gradient implementation.
  • Run example_optimization.py to optimize the parameters of a bilateral filter layer to automatically denoise an image.

Optimized bilateral filter prediction:

Citation:

If you find our code useful, please cite our work

@article{wagner2022ultra,
  title={Ultra low-parameter denoising: Trainable bilateral filter layers in computed tomography},
  author={Wagner, Fabian and Thies, Mareike and Gu, Mingxuan and Huang, Yixing and Pechmann, Sabrina and Patwari, Mayank and Ploner, Stefan and Aust, Oliver and Uderhardt, Stefan and Schett, Georg and Christiansen, Silke and Maier, Andreas},
  journal={arXiv preprint arXiv:2201.10345},
  year={2022}
}
You might also like...
📦 PyTorch based visualization package for generating layer-wise explanations for CNNs.
📦 PyTorch based visualization package for generating layer-wise explanations for CNNs.

Explainable CNNs 📦 Flexible visualization package for generating layer-wise explanations for CNNs. It is a common notion that a Deep Learning model i

PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

[CVPR 2021] Official PyTorch Implementation for
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

Predictive AI layer for existing databases.
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

Predictive AI layer for existing databases.
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

An abstraction layer for mathematical optimization solvers.
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Comments
  • 3D case example

    3D case example

    Hi, I am grateful that you have shared such awesome codes. I have downloaded the codes and tested 2D case. It works well. But when I used 3D images, the results seemed weird. As shown below. image

    The input 3D image is like this: image

    Could you provide 3D demo case? Thank you very much!

    opened by cs123951 2
Releases(1.1.0)
Owner
FabianWagner
FabianWagner
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
5 Jan 05, 2023
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023