GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

Overview

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

Language grade: Python License: MIT

Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images

Wuyang Chen*, Ziyu Jiang*, Zhangyang Wang, Kexin Cui, and Xiaoning Qian

In CVPR 2019 (Oral). [Youtube]

Overview

Segmentation of ultra-high resolution images is increasingly demanded in a wide range of applications (e.g. urban planning), yet poses significant challenges for algorithm efficiency, in particular considering the (GPU) memory limits.

We propose collaborative Global-Local Networks (GLNet) to effectively preserve both global and local information in a highly memory-efficient manner.

  • Memory-efficient: training w. only one 1080Ti and inference w. less than 2GB GPU memory, for ultra-high resolution images of up to 30M pixels.

  • High-quality: GLNet outperforms existing segmentation models on ultra-high resolution images.

Acc_vs_Mem
Inference memory v.s. mIoU on the DeepGlobe dataset.
GLNet (red dots) integrates both global and local information in a compact way, contributing to a well-balanced trade-off between accuracy and memory usage.

Examples
Ultra-high resolution Datasets: DeepGlobe, ISIC, Inria Aerial

Methods

GLNet
GLNet: the global and local branch takes downsampled and cropped images, respectively. Deep feature map sharing and feature map regularization enforce our global-local collaboration. The final segmentation is generated by aggregating high-level feature maps from two branches.

GLNet
Deep feature map sharing: at each layer, feature maps with global context and ones with local fine structures are bidirectionally brought together, contributing to a complete patch-based deep global-local collaboration.

Training

Current this code base works for Python version >= 3.5.

Please install the dependencies: pip install -r requirements.txt

First, you could register and download the Deep Globe "Land Cover Classification" dataset here: https://competitions.codalab.org/competitions/18468

Then please sequentially finish the following steps:

  1. ./train_deep_globe_global.sh
  2. ./train_deep_globe_global2local.sh
  3. ./train_deep_globe_local2global.sh

The above jobs complete the following tasks:

  • create folder "saved_models" and "runs" to store the model checkpoints and logging files (you could configure the bash scrips to use your own paths).
  • step 1 and 2 prepare the trained models for step 2 and 3, respectively. You could use your own names to save the model checkpoints, but this requires to update values of the flag path_g and path_g2l.

Evaluation

  1. Please download the pre-trained models for the Deep Globe dataset and put them into folder "saved_models":
  1. Download (see above "Training" section) and prepare the Deep Globe dataset according to the train.txt and crossvali.txt: put the image and label files into folder "train" and folder "crossvali"
  2. Run script ./eval_deep_globe.sh

Citation

If you use this code for your research, please cite our paper.

@inproceedings{chen2019GLNET,
  title={Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images},
  author={Chen, Wuyang and Jiang, Ziyu and Wang, Zhangyang and Cui, Kexin and Qian, Xiaoning},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

Acknowledgement

We thank Prof. Andrew Jiang and Junru Wu for helping experiments.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022