Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Overview

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou, Kai Chen

Abstract:

We study the problem of weakly semi-supervised object detection with points (WSSOD-P), where the training data is combined by a small set of fully annotated images with bounding boxes and a large set of weakly-labeled images with only a single point annotated for each instance. The core of this task is to train a point-to-box regressor on well labeled images that can be used to predict credible bounding boxes for each point annotation. Group R-CNN significantly outperforms the prior method Point DETR by 3.9 mAP with 5% well-labeled images, which is the most challenging scenario.

Install

The project has been fully tested under MMDetection V2.22.0 and MMCV V1.4.6, other versions may not be compatible. so you have to install mmcv and mmdetection firstly. You can refer to Installation of MMCV & Installation of MMDetection

Prepare the dataset

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │      ├──instances_train2017.json
│   │   │      ├──instances_val2017.json
│   │   ├── train2017
│   │   ├── val2017

You can generate point annotations with the command. It may take you several minutes for instances_train2017.json

python tools/generate_anns.py /data/coco/annotations/instances_train2017.json
python tools/generate_anns.py /data/coco/annotations/instances_val2017.json

Then you can find a point_ann directory, all annotations in the directory contain point annotations. Then you should replace the original annotations in data/coco/annotations with generated annotations.

NOTES

Here, we sample a point from the mask for all instances. But we split the images into two divisions in :class:PointCocoDataset.

  • Images with only bbox annotations(well-labeled images): Only be used in training phase. We sample a point from its bbox as point annotations each iteration.
  • Images with only point annotations(weakly-labeled sets): Only be used to generate bbox annotations from point annotations with trained point to bbox regressor.

Train and Test

8 is the number of gpus.

For slurm

Train

GPUS=8 sh tools/slurm_train.sh partition_name  job_name projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py  ./exp/group_rcnn

Evaluate the quality of generated bbox annotations on val dataset with pre-defined point annotations.

GPUS=8 sh tools/slurm_test.sh partition_name  job_name projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py ./exp/group_rcnn/latest.pth --eval bbox

Run the inference process on weakly-labeled images with point annotations to get bbox annotations.

GPUS=8 sh tools/slurm_test.sh partition_name  job_name  projects/configs/10_coco/group_rcnn_50e_10_percent_coco_detr_augmentation.py   path_to_checkpoint  --format-only --options  "jsonfile_prefix=./generated"
For Pytorch distributed

Train

sh tools/dist_train.sh projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py 8 --work-dir ./exp/group_rcnn

Evaluate the quality of generated bbox annotations on val dataset with pre-defined point annotations.

sh tools/dist_test.sh  projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py  path_to_checkpoint 8 --eval bbox

Run the inference process on weakly-labeled images with point annotations to get bbox annotations.

sh tools/dist_test.sh  projects/configs/10_coco/group_rcnn_50e_10_percent_coco_detr_augmentation.py   path_to_checkpoint 8 --format-only --options  "jsonfile_prefix=./data/coco/annotations/generated"

Then you can train the student model focs.

sh tools/dist_train.sh projects/configs/10_coco/01_student_fcos.py 8 --work-dir ./exp/01_student_fcos

Results & Checkpoints

We find that the performance of teacher is unstable under 24e setting and may fluctuate by about 0.2 mAP. We report the average.

Model Backbone Lr schd Augmentation box AP Config Model log Generated Annotations
Teacher(Group R-CNN) R-50-FPN 24e DETR Aug 39.2 config ckpt log -
Teacher(Group R-CNN) R-50-FPN 50e DETR Aug 39.9 config ckpt log generated.bbox.json
Student(FCOS) R-50-FPN 12e Normal 1x Aug 33.1 config ckpt log -
Owner
Shilong Zhang
Shilong Zhang
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022