Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Overview

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm

Overview

Multi-band Spectro Radiomertric images are images comprising of several channels / bands which hold information on band energy in each pixel.
The most common multi band channels are the RGB (Red Green Blue) channels of the visible light spectrum.

The images used are LANDSAT 8 satellite images and each image consist of three bands, namely: Thermal Infrared, Red and Near infrared bands corresponding to band 10, band 4 and band 5 of LANDSAT 8 satellite imagery with wavelengths of 10.895µm, 0.655µm and 0.865µm respectively.

Each pixel in each bands of each image are used to compute three features namely: NDVI (Normalized Differential Vegetative Index), PV (Portion of Vegetation) and LST (Land Surface Temperature).

The K-means cluster algorithm is initialized and the "number of clusters" hyper-parameter is set to 60. The algorithm is then trained on the extracted features and forms 60 different clusters represented by each of the 60 centroids.

These centroids are stored in the "ouput" folder and will be futher studied to learn what NDVI, PV and LST combinations a geograhical location might need to have for the occurence and spread of wild fire to be highly probable.



Features

NDVI (Normalized Differential Vegetative Index):

The Normalized Differential Vegetative Index is a metric for checking the presence and health of a vegetation in a given region.
It is basically how much RED light energy from the visible light spectrum is absorbed by the plant and how much NIR (near-infrared rays) it emmits.
Healthy vegetation absorbs red-light energy to fuel photosynthesis and create chlorophyll, and a plant with more chlorophyll will reflect more near-infrared energy than an unhealthy plant.
The NDVI ranges from -1 to 1, -1 corresponds to a very unhealthy plant and 1 corresponds to a very healthy plant.

The mathematical expression for NDVI is:
NDVI = (NIR - RED) / (NIR + RED)


PV (Portion of Vegetation):

Portion of Vegetation is the ratio of the vertical projection area of vegetation on the ground to the total vegetation area

The mathematical expression for PV is:
PV = (NDVI - NDVImin) / (NDVImin + NDVImax)
NDVImin is the minimum NDVI value a pixel holds in a single image
NDVImin is the maximum NDVI value a pixel holds in a single image


LST (Land Surface Temperature):

Land Surface Temperature is the radiative temperature / intensity of the land surface

The mathematical expression for LST is:
LST = BT / ( 1 + ( ( kn * BT / p ) * np.log(E) ) )

BT is brighness Temperature in celcius and is mathematically expressed as:
BT = (K2 / np.log( ( K1 / TOA ) + 1 )) - 273.15
where K1 and K2 are landsat 8 constants 774.8853 and 1321.0789 respectively

TOA (Top of Atmosphere) Reflectance is a unitless measurement which provides the ratio of radiation reflected to the incident solar radiation on a given surface.
It is mathematically expressed as:
TOA = ML * TIR + Al
where ML and Al are landsat 8 constants 3.42E-4 and 0.1 respectively.

p is mathematically expressed as:
p = hc/A
where h, c and a are plank's constant, speed of light and boltzmann constant respectively

E is emissivity of the land surface and is mathematically expressed as:
( Ev * PV * Rv ) + ( Es * ( 1 - PV ) * Rs ) + C
where:
Ev (Vegitation Emissivity) of location = 0.986
Es (Soil Emissivity) of location = 0.973
C (topography factor) of location = 0.0001
Rv =(0.92762 + (0.07033PV))
Rs=(0.99782 + (0.05362
PV))



Dependencies

  • Rasterio
  • Numpy
  • Pandas
  • Sklearn
  • Pickle


Setup

clone the repository and download the 'requirement.txt' files, then open terminal in the working directory and type 'pip install -r requirements.txt' to install all the requirements for this project.
Owner
Chibueze Henry
A machine learning enthusiast and developer as well as a full-stack web developer
Chibueze Henry
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022