VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

Overview

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations" by Ying Chen, Hojung Kwon, Hazer Inaltekin, and Maria Gorlatova.

Outline

I. VRViewportPose Dataset

1. Data Collection

We conducted an IRB-approved data collection of the viewport pose in 3 VR games and across 3 different types of VR user interfaces, with over 5.5 hours of user data in total.

A. Stimuli

We collected the viewport pose for desktop, headset, and phone-based virtual reality (VR), with open-source VR games with different scene complexities from Unity store, containing 1 indoor (Office [1]) and 2 outdoor (Viking Village [2], Lite [3]) scenarios. In desktop VR, rotational and translational movements are made using the mouse and up arrow key. The poses in the headset VR are collected with a standalone Oculus Quest 2, where rotational and translational movements are made by moving the head and by using the controller thumbstick. The poses in the phone-based VR are collected with Google Pixel 2 XL and Nokia 7.1 with Android 9, and rotational and translational movements are made by moving the motion-sensor-equipped phone and by tapping on the screen using one finger.

Figure 1: Open-source VR games used for the data collection: (a) Office; (b) Viking Village; (c) Lite.

B. Procedure

The data collection, conducted under COVID-19 restrictions, involved unaided and Zoom-supported remote data collection by distributing desktop and phone-based VR apps, and a small number of socially distanced in-lab experiments for headset and phone-based VR. We recorded the viewport poses of 20 participants (9 male, 11 female, age 20-48), 5 participants (2 male, 3 female, age 23-33), and 5 participants (3 male, 2 female, age 23-33) in desktop, headset, and phone-based VR, respectively. The participants were seated in front of a PC, wore the headset while standing, and held a phone in landscape mode while standing in desktop, headset, and phone-based VR, respectively. For desktop and phone-based VR, each participant explored VK, Lite, and Office for 5, 5, and 2 minutes, respectively. For headset VR, the participants only explored each game for 2 minutes to avoid simulator sickness. Considering the device computation capability and the screen refresh rate, the timestamp and viewport pose of each participant are recorded at a target frame rate of 60 Hz, 72 Hz, and 60 Hz for desktop, headset, and phone-based VR, respectively. For each frame, we record the timestamp, the x, y, z positions and the roll, pitch, and yaw Euler orientation angles. For the Euler orientation angles β, γ, α, the intrinsic rotation orders are adopted, i.e., the viewport pose is rotated α degrees around the z-axis, β degrees around the x-axis, and γ degrees around the y-axis. We randomize the initial viewport position in VR games over the whole bounding area. We fix the initial polar angle of the viewport to be 90 degree, and uniformly randomize the initial azimuth angle on [-180,180) degree.

2. Download the Dataset

The dataset can be download here.

A. The structure of the dataset

The dataset follows the hierarchical file structure shown below:

VR_Pose
└───data_Desktop
│   │
│   └───Office_Desktop_1.txt
│   └───VikingVillage_Desktop_1.txt
│   └───Lite_Desktop_1.txt
│   └───Office_Desktop_2.txt
│   └───VikingVillage_Desktop_2.txt
│   └───Lite_Desktop_2.txt
│   ...
│
└───data_Oculus
│   │
│   └───Office_Oculus_1.txt
│   └───VikingVillage_Oculus_1.txt
│   └───Lite_Oculus_1.txt
│   └───Office_Oculus_2.txt
│   └───VikingVillage_Oculus_2.txt
│   └───Lite_Oculus_2.txt
|   ...
|
└───data_Phone
...

There are 3 sub-folders corresponding to the different VR interfaces. In the subfolder of data_Desktop, there are 60 TXT files, corresponding to 20 participants, each of them experiencing 3 VR games. There are 15 TXT files in both the data_Oculus and data_Phone subfolders, corresponding to 5 participants experiencing 3 VR games. In total, there are over 5.5 hours of user data.

3. Extract the Orientation and Position Models

The OrientationModel.py and PositionModel.py are used to extract the orientation and position models for VR viewport pose, respectively. Before running the scripts in this repository, you need to download the repository and install the necessary tools and libraries on your computer, including scipy, numpy, pandas, fitter, and matplotlib.

A. Orientation model

Data processing

We convert the recorded Euler angles to polar angle θ and azimuth angle ϕ. After applying rotation matrix R, we have

From the above equation, θ is calculated as θ=sinαsinγ-cosαsinβcosγ, and ϕ is given by

where ϕ=atan((cosγsinαsinβ+cosαsinγ)/(cosβcosγ)).

After we obtain the polar and azimuth angles, we fit the polar angle, polar angle change, and azimuth angle change to a set of statistical models and mixed models (of two statistical models).

Orientation model script

The orientaion model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/OrientationModel.py. To obtain the orientation model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in OrientationModel.py to the file location of the pose dataset.

c. You can directly run OrientationModel.py (python .\OrientationModel.py). It will automatically run the pipeline.

d. The generated EPS images named "polar_fit_our_dataset.eps", "polar_change.eps", "azimuth_change.eps", and "ACF_our_dataset.eps" will be saved in a folder. "polar_fit_our_dataset.eps", "polar_change.eps", and "azimuth_change.eps" show the distribution of the experimental data for polar angle, polar angle change, and azimuth angle change fitted by different statistical distributions, respectively. "ACF_our_dataset.eps" shows the autocorrelation function (ACF) of polar and azimuth angle samples that are Δt s apart.

B. Position model

Data processing

We apply the standard angle model proposed in [5] to extract flights from the trajectories. An example of the collected trajectory for one user in Lite and the extracted flights is shown below.

Position model script

The position model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/PositionModel.py. To obtain the position model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in PositionModel.py to the file location of the pose dataset.

c. You can directly run PositionModel.py (python .\PositionModel.py). It will automatically run the pipeline.

d. The generated EPS images named "flight_sample.eps", "flight.eps", "pausetime_distribution.eps", and "correlation.eps" will be saved in a folder. "flight_sample.eps" shows an example of the collected trajectories and the corresponding flights. "flight.eps" and "pausetime_distribution.eps" show distributions of the flight time and the pause duration for collected samples, respectively. "correlation.eps" shows the correlation of the azimuth angle and the walking direction.

II. Visibility Similarity

4. Analytical Results

The codes for analyzing the visibility similarity can be download here.

a. You will see three files after extracting the ZIP file. Analysis_Visibility_Similarity.m sets the parameters for the orientation model, position model, and the visibility similarity model, and calculates the analytical results of visibility similarity. calculate_m_k.m calculates the k-th moment of the position displacement, and calculate_hypergeom.m is used to calculate the hypergeometric function. b. Run the Analysis_Visibility_Similarity.m. You can get the analytical results of visibility similarity.

5. Implementation of ALG-ViS

The codes for implementing the ALG-ViS can be downloaded here. Tested with Unity 2019.2.14f1 and Oculus Quest 2 with build 30.0.

a. In Unity Hub, create a new 3D Unity project. Download ZIP file and unzip in the "Assets" folder of the Unity project.

b. Install Android 9.0 'Pie' (API Level 28) or higher installed using the SDK Manager in Android Studio.

c. Navigate to File>Build Settings>Player Settings. Set 'Minimum API Level' to be Android 9.0 'Pie' (API Level 28) or higher. In 'Other Settings', make sure only 'OpenGLES3' is selected. In 'XR Settings', check 'Virtual Reality Selected' and add 'Oculus' to the 'Virtual Reality SDKs'. Rename your 'CompanyName' and 'GameName', and the Bundle Identifier string com.CompanyName.GameName will be the unique package name of your application installed on the Oculus device.

d. Copy the "pose.txt" and "visValue.txt" to the Application.persistentDataPath which points to /storage/emulated/0/Android/data/ /files, where is com.CompanyName.GameName.

e. Navigate to Window>Asset Store. Search for the virtual reality game (e.g., the 'Make Your Fantasy Game - Lite' game [3]) in the Asset Store, and select 'Buy Now' and 'Import'.

f. Make sure only the 'ALG_ViS' scene is selected in 'Scenes in Build'. Select your connected target device (Oculus Quest 2) and click 'Build and Run'.

g. The output APK package will be saved to the file path you specify, while the app will be installed on the Oculus Quest 2 device connected to your computer.

h. Disconnect the Oculus Quest 2 from the computer. After setting up a new Guardian Boundary, the vritual reality game with ALG-ViS will be automatically loaded.

Citation

Please cite the following paper in your publications if the dataset or code helps your research.

 @inproceedings{Chen22VRViewportPose,
  title={{VR} Viewport Pose Model for Quantifying and Exploiting Frame Correlations},
  author={Chen, Ying and Kwon, Hojung and Inaltekin, Hazer and Gorlatova, Maria},
  booktitle={Proc. IEEE INFOCOM},
  year={2022}
}

Acknowledgments

We thank the study's participants for their time in the data collection. The contributors of the dataset and code are Ying Chen and Maria Gorlatova. For questions on this repository or the related paper, please contact Ying Chen at yc383 [AT] duke [DOT] edu.

References

[1] Unity Asset Store. (2020) Office. https://assetstore.unity.com/packages/3d/environments/snapsprototype-office-137490

[2] Unity Technologies. (2015) Viking Village. https://assetstore.unity.com/packages/essentials/tutorialprojects/viking-village-29140

[3] Xiaolianhua Studio. (2017) Lite. https://assetstore.unity.com/packages/3d/environments/fantasy/makeyour-fantasy-game-lite-8312

[4] Oculus. (2021) Oculus Quest 2. https://www.oculus.com/quest-2/

[5] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the Levy-walk nature of human mobility,” in Proc. IEEE INFOCOM, 2008.

Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022