text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

Overview

text recognition toolbox

1. 项目介绍

该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。

模型 论文标题 发表年份 模型方法划分
CRNN 《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》 2017 CNN+BiLSTM+CTC
GRCNN 《Gated recurrent convolution neural network for OCR》 2017 Gated Recurrent Convulution Layer + BiSTM + CTC
FAN 《Focusing attention: Towards accurate text recognition in natural images》 2017 focusing network+1D attention
SAR 《Show, attend and read: A simple and strong baseline for irregular text recognition》 2019 ResNet+2D attention
DAN 《Decoupled attention network for text recognition》 2020 FCN+convolutional alignment module
SATRN 《On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention》 2020 Transformer

2. 如何使用

2.1 环境要求

torch==1.3.0
numpy==1.17.3
lmdb==0.98
opencv-python==3.4.5.20

2.2 训练

  • 数据准备

首先需要准备训练数据,目前只支持lmdb格式的数据,数据转换的步骤如下:

  1. 准备图片数据集,图片是根据检测框进行切分后的数据
  2. 准备label.txt,标注文件需保持如下的格式
1.jpg 文字检测
2.jpg 文字识别
  1. 进行lmdb格式数据集的转换
python3 tools/create_lmdb_dataset.py --inputPath {图片数据集路径} --gtFile {标注文件路径} --outputPath {lmdb格式数据集保存路径}
  • 配置文件

目前每个模型都单独配备了一个配置文件,这里以CRNN为例, 配置文件主要参数的含义如下:

一级参数 二级参数 参数含义 备注
TrainReader dataloader 自定义的DataLoader类
select_data 选择使用的lmdb格式数据集 默认为'/',即使用{lmdb_sets_dir}路径下所有的lmdb数据集。如果想控制同一个batch里不同数据集的比例,可以配合{batch_ratio}使用,并将数据集名称用'-'进行分割,例如设置成'数据集1-数据集2-数据集3'
batch_ratio 控制在一个batch中,各个lmdb格式数据集的比例 配合{select_data}进行使用,将比例用'-'进行分割,例如设置成'0.3-0.3-0.4'。即数据集1使用batch_size * 0.3的比例,剩余的数据集以此类推。
total_data_usage_ratio 控制使用的整体数据集比例 默认为1.0,即使用全部的数据集
padding 是否对数据进行padding补齐 默认为True,设置为False即采用resize的方式
Global highest_acc_save_type 是否只保存识别率最高的模型 默认为False
resumed_optimizer 是否加载之前保存的optimizer 默认为False
batch_max_length 最大的字符串长度 超过这个字符串长度的训练数据会被过滤掉
eval_batch_step 保存模型的间隔步数
Architecture function 使用的模型 此处为'CRNN'
SeqRNN input_size LSTM输入的尺寸 即backbone输出的通道个数
hidden_size LSTM隐藏层的尺寸
  • 模型训练

完成上述配置后,使用以下命令即可开始模型的训练:

python train.py -c configs/CRNN.yml

2.3 预测

  • 配置文件

同样地,针对模型预测,也都单独配备了一个配置文件,这里以CRNN为例, 需要修改的配置参数如下:

一级参数 二级参数 参数含义 备注
Global pretrain_weights 模型文件路径 剩余配置参数和训练保持一致即可
infer_img 待预测的图片,可以是文件夹或者是图片路径
  • 模型预测

完成上述配置后,使用以下命令即可开始模型的预测:

python predict.py -c configs/CRNN.yml

3. 预训练模型

以下是5个开源的中文自然场景数据集,可以直接根据上述的模型配置进行模型训练:

数据集 网盘地址 备注
一共包括5个自然场景训练集:
ArT_train, LSVT_train, MTWI_train, RCTW17_train, ReCTS_train
以及一个自然场景验证集:ReCTS_val
链接: https://pan.baidu.com/s/1fvExHzeojA_Yhj3_wDflwA
提取码: kzrd
"train"是训练集,"val"是验证集

以下为5个算法的预训练模型,训练的明细请见第4部分里的实验设定:

模型 网盘地址 备注
一共包含5个预训练模型:CRNN.pth, GRCNN.pth, FAN.pth, DAN.pth, SAR.pth
以及一个字典文件:keys.txt
链接: https://pan.baidu.com/s/1IG-1lxytrOqry9c5Nc1GzQ
提取码: k3ij

4. 实验结果

针对目前已复现的5个算法,我用统一的数据集以及参数设定进行了实验对比,实验设定以及实验结果如下:

  • 实验设定
实验设定 明细 备注
训练集 ArT_train:44663
LSVT_train:218552
MTWI_train:79964
RCTW17_train:33342
ReCTS_train:83119
这5个均为开源自然场景数据集,其中做了剔除模糊数据等处理
验证集 ReCTS_val:9231 测试集为从ReCTS中按照9:1比例划分的验证集,注意ReCTS以水平文本居多
batch_size 128
img_shape [1, 32, 256] 尺寸进行等比例放缩,小于256的进行padding,大于256的resize至256
optimizer function: adam
base_lr: 0.001
momentum: 0.9
weight_decay: 1.0e-4
iter 60000 一共训练了60000步,每2000步会进行一次验证
  • 实验结果
算法 最高识别率 最大正则编辑距离 模型大小
CRNN 59.89 0.7959 120M
GRCNN 70.51 0.8597 78M
FAN 75.78 0.8924 764M
SAR 78.13 0.9037 722M
DAN 78.99 0.9064 639M

下图为各个算法在验证集上的识别率,每2000步会进行验证:

fig1

  • 预测结果示例
算法 预测结果 备注
CRNN image-20210121152011971 预测结果均取自验证集识别率最高的模型,
左边一列为预测结果,右边为标注结果
GRCNN image-20210121152134249
FAN image-20210121152239497
SAR image-20210121152325124
DAN image-20210121152407344
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023